Back to Search Start Over

Boundary null-controllability of 1-D coupled parabolic systems with Kirchhoff-type conditions

Authors :
Kuntal Bhandari
Víctor Hernández-Santamaría
Franck Boyer
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
ANR-11-IDEX-0002-02/11-LABX-0040,CIMI,Centre International de Mathématiques et d’Informatique (de Toulouse)(2011)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Instituto de Matematicas [México]
Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
ANR-11-LABX-0040,CIMI,Centre International de Mathématiques et d'Informatique (de Toulouse)(2011)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Universidad Nacional Autónoma de México (UNAM)
Source :
Mathematics of Control, Signals, and Systems, Mathematics of Control, Signals, and Systems, Springer Verlag, In press, Mathematics of Control, Signals, and Systems, 2021, 33 (3), pp.413--471. ⟨10.1007/s00498-021-00285-z⟩, Mathematics of Control, Signals, and Systems, Springer Verlag, 2021, 33 (3), pp.413--471. ⟨10.1007/s00498-021-00285-z⟩
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

The main concern of this article is to investigate the boundary controllability of some $$2\times 2$$ one-dimensional parabolic systems with both the interior and boundary couplings: The interior coupling is chosen to be linear with constant coefficient while the boundary one is considered by means of some Kirchhoff-type condition at one end of the domain. We consider here the Dirichlet boundary control acting only on one of the two state components at the other end of the domain. In particular, we show that the controllability properties change depending on which component of the system the control is being applied. Regarding this, we point out that the choices of the interior coupling coefficient and the Kirchhoff parameter play a crucial role to deduce the positive or negative controllability results. Further to this, we pursue a numerical study based on the well-known penalized HUM approach. We make some discretization for a general interior-boundary coupled parabolic system, mainly to incorporate the effects of the boundary couplings into the discrete setting. This allows us to illustrate our theoretical results as well as to experiment some more examples which fit under the general framework, for instance a similar system with a Neumann boundary control on either one of the two components.

Details

ISSN :
1435568X and 09324194
Volume :
33
Database :
OpenAIRE
Journal :
Mathematics of Control, Signals, and Systems
Accession number :
edsair.doi.dedup.....39fb9ab5ee9f9b543746c9d50742ccef