Back to Search
Start Over
Transport equation in generalized Campanato spaces
- Publication Year :
- 2019
-
Abstract
- In this paper we study the transport equation in $\mathbb{R}^n \times (0,T)$, $T >0$, \[ \partial _t f + v\cdot \nabla f = g, \quad f(\cdot ,0)= f_0 \quad \text{in}\quad \mathbb{R}^n \] in generalized Campanato spaces $\mathscr{L}^s_{ q(p, N)}(\mathbb{R}^n)$. The critical case is particularly interesting, and is applied to the local well-posedness problem in a space close to the Lipschitz space in our companion paper\cite{cw}. More specifically, in the critical case $s=q=N=1$ we have the embedding relations, $B^1_{\infty, 1}(\Bbb R^n) \hookrightarrow \mathscr{L}^{ 1}_{ 1(p, 1)}(\mathbb{R}^n) \hookrightarrow C^{0, 1} (\Bbb R^n)$, where $B^1_{\infty, 1} (\Bbb R^n)$ and $C^{0, 1} (\Bbb R^n)$ are the Besov space and the Lipschitz space respectively. For $f_0\in \mathscr {L}^{ 1}_{ 1(p, 1)}(\mathbb {R}^{n})$, $v\in L^1(0,T; \mathscr {L}^{ 1}_{ 1(p, 1)}(\mathbb {R}^{n}))),$ and $ g\in L^1(0,T; \mathscr {L}^{ 1}_{ 1(p, 1)}(\mathbb {R}^{n})))$, we prove the existence and uniqueness of solutions to the transport equation in $ L^\infty(0,T; \mathscr {L}^{ 1}_{ 1(p, 1)}(\mathbb {R}^{n}))$ such that \[ \|f\|_{L^\infty(0,T; \mathscr{L}^1_{ 1(p, 1)} (\mathbb{R}^n)))} \le C \Big( \|v\|_{L^1(0,T; \mathscr{L}^1_{1(p, 1)} (\mathbb{R}^n)))}, \|g\|_{ L^1(0,T; \mathscr{L}^1_{ 1(p, 1)}(\mathbb{R}^n)))}\Big). \] Similar results in the other cases are also proved.<br />52 pages
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....39eb978b45be26368b3570e8200ba2b9