Back to Search Start Over

Symmetry of the Definition of Degeneration in Triangulated Categories

Authors :
Alexander Zimmermann
Manuel Saorín
University of Murcia
Universidad de Murcia
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 (LAMFA)
Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)
Source :
DIGITUM. Depósito Digital Institucional de la Universidad de Murcia, instname, DIGITUM: Depósito Digital Institucional de la Universidad de Murcia, Universidad de Murcia
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Module structures of an algebra on a fixed finite dimensional vector space form an algebraic variety. Isomorphism classes correspond to orbits of the action of an algebraic group on this variety and a module is a degeneration of another if it belongs to the Zariski closure of the orbit. Riedtmann and Zwara gave an algebraic characterisation of this concept in terms of the existence of short exact sequences. Jensen, Su and Zimmermann, as well as independently Yoshino, studied the natural generalisation of the Riedtmann-Zwara degeneration to triangulated categories. The definition has an intrinsic non-symmetry. Suppose that we have a triangulated category in which idempotents split and either for which the endomorphism rings of all objects are artinian, or which is the category of compact objects in an algebraic compactly generated triangulated K-category. Then we show that the non-symmetry in the algebraic definition of the degeneration is inessential in the sense that the two possible choices which can be made in the definition lead to the same concept.

Details

Language :
English
Database :
OpenAIRE
Journal :
DIGITUM. Depósito Digital Institucional de la Universidad de Murcia, instname, DIGITUM: Depósito Digital Institucional de la Universidad de Murcia, Universidad de Murcia
Accession number :
edsair.doi.dedup.....39e5a920c0750e5dfb97d7a40495c155