Back to Search Start Over

Pharmacokinetic properties of enantiomerically pure GluN2B selective NMDA receptor antagonists with 3-benzazepine scaffold

Authors :
Bernhard Wünsch
Simon M. Ametamey
Kirstin Lehmkuhl
Frederik Börgel
Fabian Galla
Dirk Schepmann
Source :
Journal of Pharmaceutical and Biomedical Analysis. 172:214-222
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Recently, the eutomers of highly potent GluN2B selective NMDA receptor antagonists with 3-benzazepine scaffold were identified. Herein, pharmacokinetic properties regarding lipophilicity, plasma protein binding (PPB) and metabolism are analyzed. The logD7.4 values of 1.68 for phenol 1 and 2.46 for methyl ether 2 are in a very good range for CNS agents. A very similar logD7.4 value was recorded for the prototypical GluN2B antagonist ifenprodil (logD7.4 = 1.49). The herein developed high performance affinity chromatography (HPAC) method using human serum albumin as stationary phase led to PPB of 3-benzazepines (R)-1-3 and (S)-1-3 of 76–98%. Upon incubation with mouse liver microsomes, (R)-1-3 and (S)-1-3 showed moderate to high metabolic stability. The (R)-configured eutomers turned out to be metabolically more stable than their (S)-configured distomers. During phase I metabolism of 3-benzazepines 1-3 hydroxylations at both aromatic rings, the aliphatic side chain and the seven-membered ring were observed. O-demethylation of methyl ether (S)-2 was faster than O-demethylation of its enantiomer (R)-2. In phase I biotransformation the phenol eutomer (R)-1 showed comparable stability as ifenprodil. In phase II biotransformation, glucuronidation of the phenolic (only 1) and benzylic hydroxy groups was observed. Both enantiomers formed the same type of metabolites, respectively, but in different amounts. Whereas, the benzylic hydroxy group of (R)-2 was glucuronidated preferably, predominant benzylic glucuronidation of (S)-3 was detected. Mouse liver microsomes produced the glucuronide of phenol 1 (main metabolite) in larger amounts than rat liver microsomes.

Details

ISSN :
07317085
Volume :
172
Database :
OpenAIRE
Journal :
Journal of Pharmaceutical and Biomedical Analysis
Accession number :
edsair.doi.dedup.....39d66c2b353588ece084e640fc64568f