Back to Search Start Over

Memoryless search algorithms in a network with faulty advice

Authors :
Danny Krizanc
Dimitris J. Kavvadias
Nicolas Hanusse
Evangelos Kranakis
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)
Algorithmics for computationally intensive applications over wide scale distributed platforms (CEPAGE)
Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
School of of Electrical and Computer Engineering [Athens] (School of E.C.E)
National Technical University of Athens [Athens] (NTUA)
Department of Mathematics and Computer Science
Wesleyan University
ANR-05-MMSA-0006,ALPAGE,ALgorithmique des Plates-formes A Grande Echelle(2005)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest
Source :
Theoretical Computer Science, Theoretical Computer Science, Elsevier, 2008, 402 (2-3), pp.190-198, Theoretical Computer Science, 2008, 402 (2-3), pp.190-198
Publication Year :
2008
Publisher :
HAL CCSD, 2008.

Abstract

In this paper, we present a randomized algorithm for a mobile agent to search for an item stored at a node t of a network, without prior knowledge of its exact location. Each node of the network has a database that will answer queries of the form “how do I find t?” by responding with the first edge on a shortest path to t. It may happen that some nodes, called liars, give bad advice. We investigate a simple memoryless algorithm which follows the advice with some fixed probability q>1/2 and otherwise chooses a random edge. If the degree of each node and number of liars k are bounded, we show that the expected number of edges traversed by the agent before finding t is bounded from above by O(d+rk), where d is the distance between the initial and target nodes and r=q1−q. We also show that this expected number of steps can be significantly improved for particular topologies such as the complete graph and the torus.

Details

Language :
English
ISSN :
18792294 and 03043975
Database :
OpenAIRE
Journal :
Theoretical Computer Science, Theoretical Computer Science, Elsevier, 2008, 402 (2-3), pp.190-198, Theoretical Computer Science, 2008, 402 (2-3), pp.190-198
Accession number :
edsair.doi.dedup.....39b04f25af95a6b3adfdf05f7af57d15