Back to Search Start Over

The Drosophila inner-membrane protein PMI controls crista biogenesis and mitochondrial diameter

Authors :
Thomas Rival
Mélanie Bentobji
Najla El Fissi
L. Miguel Martins
Roberta Tufi
Julien Royet
Jean-Charles Liévens
Marc Macchi
Institut de Biologie du Développement de Marseille (IBDM)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Centre de recherche en neurobiologie - neurophysiologie de Marseille (CRN2M)
Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Réponse immunitaire et developpement chez les insectes (RIDI - UPR 9002)
Institut de biologie moléculaire et cellulaire (IBMC)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Cell Science, Journal of Cell Science, Company of Biologists, 2013, 126 (Pt 3), pp.814-24. ⟨10.1242/jcs.115675⟩, Journal of Cell Science, 2013, 126 (Pt 3), pp.814-24. ⟨10.1242/jcs.115675⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; Cristae are mitochondrial inner-membrane structures that concentrate respiratory chain complexes and hence regulate ATP production. Mechanisms controlling crista morphogenesis are poorly understood and few crista determinants have been identified. Among them are the Mitofilins that are required to establish crista junctions and ATP-synthase subunits that bend the membrane at the tips of the cristae. We report here the phenotypic consequences associated with the in vivo inactivation of the inner-membrane protein Pantagruelian Mitochondrion I (PMI) both at the scale of the whole organism, and at the level of mitochondrial ultrastructure and function. We show that flies in which PMI is genetically inactivated experience synaptic defects and have a reduced life span. Electron microscopy analysis of the inner-membrane morphology demonstrates that loss of PMI function increases the average length of mitochondrial cristae in embryonic cells. This phenotype is exacerbated in adult neurons in which cristae form a dense tangle of elongated membranes. Conversely, we show that PMI overexpression is sufficient to reduce crista length in vivo. Finally, these crista defects are associated with impaired respiratory chain activity and increases in the level of reactive oxygen species. Since PMI and its human orthologue TMEM11 are regulators of mitochondrial morphology, our data suggest that, by controlling crista length, PMI influences mitochondrial diameter and tubular shape.

Details

Language :
English
ISSN :
00219533 and 14779137
Database :
OpenAIRE
Journal :
Journal of Cell Science, Journal of Cell Science, Company of Biologists, 2013, 126 (Pt 3), pp.814-24. ⟨10.1242/jcs.115675⟩, Journal of Cell Science, 2013, 126 (Pt 3), pp.814-24. ⟨10.1242/jcs.115675⟩
Accession number :
edsair.doi.dedup.....39ac6a0445180df4d364e5b9e51db812
Full Text :
https://doi.org/10.1242/jcs.115675⟩