Back to Search Start Over

Ruling out FPT algorithms for Weighted Coloring on forests

Authors :
Júlio Araújo
Julien Baste
Ignasi Sau
Universidade Federal do Ceará = Federal University of Ceará (UFC)
Algorithmes, Graphes et Combinatoire (ALGCO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
ANR-16-CE40-0028,DE-MO-GRAPH,Décomposition de Modèles Graphiques(2016)
Universidade Federal do Ceará ( UFC )
Algorithmes, Graphes et Combinatoire ( ALGCO )
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM )
Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS )
Source :
Theoretical Computer Science, Theoretical Computer Science, Elsevier, 2018, 729, pp.11-19. ⟨10.1016/j.tcs.2018.03.013⟩, Electronic Notes in Discrete Mathematics, Electronic Notes in Discrete Mathematics, Elsevier, 2017, 62, pp.195-200. ⟨10.1016/j.endm.2017.10.034⟩, Electronic Notes in Discrete Mathematics, Elsevier, 2017, 62, pp.195-200. 〈10.1016/j.endm.2017.10.034〉
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Given a graph $G$, a proper $k$-coloring of $G$ is a partition $c = (S_i)_{i\in [1,k]}$ of $V(G)$ into $k$ stable sets $S_1,\ldots, S_{k}$. Given a weight function $w: V(G) \to \mathbb{R}^+$, the weight of a color $S_i$ is defined as $w(i) = \max_{v \in S_i} w(v)$ and the weight of a coloring $c$ as $w(c) = \sum_{i=1}^{k}w(i)$. Guan and Zhu [Inf. Process. Lett., 1997] defined the weighted chromatic number of a pair $(G,w)$, denoted by $\sigma(G,w)$, as the minimum weight of a proper coloring of $G$. For a positive integer $r$, they also defined $\sigma(G,w;r)$ as the minimum of $w(c)$ among all proper $r$-colorings $c$ of $G$. The complexity of determining $\sigma(G,w)$ when $G$ is a tree was open for almost 20 years, until Ara\'ujo et al. [SIAM J. Discrete Math., 2014] recently proved that the problem cannot be solved in time $n^{o(\log n)}$ on $n$-vertex trees unless the Exponential Time Hypothesis (ETH) fails. The objective of this article is to provide hardness results for computing $\sigma(G,w)$ and $\sigma(G,w;r)$ when $G$ is a tree or a forest, relying on complexity assumptions weaker than the ETH. Namely, we study the problem from the viewpoint of parameterized complexity, and we assume the weaker hypothesis $FPT \neq W[1]$. Building on the techniques of Ara\'ujo et al., we prove that when $G$ is a forest, computing $\sigma(G,w)$ is $W[1]$-hard parameterized by the size of a largest connected component of $G$, and that computing $\sigma(G,w;r)$ is $W[2]$-hard parameterized by $r$. Our results rule out the existence of $FPT$ algorithms for computing these invariants on trees or forests for many natural choices of the parameter.<br />Comment: 14 pages, 4 figures

Details

Language :
English
ISSN :
18792294, 03043975, and 15710653
Database :
OpenAIRE
Journal :
Theoretical Computer Science, Theoretical Computer Science, Elsevier, 2018, 729, pp.11-19. ⟨10.1016/j.tcs.2018.03.013⟩, Electronic Notes in Discrete Mathematics, Electronic Notes in Discrete Mathematics, Elsevier, 2017, 62, pp.195-200. ⟨10.1016/j.endm.2017.10.034⟩, Electronic Notes in Discrete Mathematics, Elsevier, 2017, 62, pp.195-200. 〈10.1016/j.endm.2017.10.034〉
Accession number :
edsair.doi.dedup.....39a8d8882d8302d05768cd3de6346de1
Full Text :
https://doi.org/10.1016/j.tcs.2018.03.013⟩