Back to Search Start Over

Enhanced motility of a Proteus mirabilis strain expressing hybrid FlaAB flagella

Authors :
Elena Artimovich
Jim Manos
Robert Belas
Source :
Microbiology (Reading, England). 150(Pt 5)
Publication Year :
2004

Abstract

Proteus mirabilishas two tandemly arranged flagellin-encoding genes,flaAandflaB.flaAis transcribed from aσ28promoter, whileflaBis silent.flaAandflaBcan undergo reversible rearrangement to produce a set of hybrid genes referred to asflaAB. Flagellins composed of FlaAB protein have a different amino acid sequence and are antigenically distinct from flagellin composed of FlaA, implicating flagellin gene conversion as a putative virulence mechanism forP. mirabilis. The change in amino acid sequence is also hypothesized to alter the filament helix and, hence, affect the motility of FlaAB-expressing strains. To test this hypothesis, the motility of wild-typeP. mirabiliswas compared with that of a strain, DF1003, locked into the FlaAB+hybrid phase, under conditions of altered ionic strength, pH and viscosity. Cell motion tracking analysis showed that DF1003 has wild-type swimming velocity at physiological conditions, but moves significantly faster and travels further compared to the wild-type at NaCl concentrations greater than 170 mM. DF1003 is also significantly faster than the wild-type at pH 5·2, 5·8 and 8·2, and at 5 and 10 % polyvinylpyrrolidone. Measurements of amplitude and wavelength for isolated flagella subjected to pH 5·8 or 425 mM NaCl showed a loss of helical structure in FlaA flagella compared to FlaAB filaments, a feature that could significantly affect motility under these conditions. These results support a hypothesis that FlaAB flagellin imparts a motile advantage toP. mirabilisin conditions that otherwise may impede bacterial movement. In a broader context, flagellar antigenic variation, commonly thought to serve as means to avoid host defences, may also enhance motility in other bacterial species, thus aiding in the adaptation and survival of the cells.

Details

ISSN :
13500872
Volume :
150
Issue :
Pt 5
Database :
OpenAIRE
Journal :
Microbiology (Reading, England)
Accession number :
edsair.doi.dedup.....398325a58ec7084b88674bee3e13a809