Back to Search
Start Over
Markers of NETosis and DAMPs are altered in critically ill COVID-19 patients
- Source :
- Digital.CSIC. Repositorio Institucional del CSIC, instname
- Publication Year :
- 2020
- Publisher :
- Research Square, 2020.
-
Abstract
- Background Coronavirus disease 19 (COVID-19) is known to present with disease severities of varying degree. In its most severe form, infection may lead to respiratory failure and multi-organ dysfunction. Here we study the levels of extracellular histone H3 (H3), neutrophil elastase (NE) and cfDNA in relation to other plasma parameters, including the immune modulators GAS6 and AXL, ICU scoring systems and mortality in patients with severe COVID-19. Methods We measured plasma H3, NE, cfDNA, GAS6 and AXL concentration in plasma of 83 COVID-19-positive and 11 COVID-19-negative patients at admission to the Intensive Care Unit (ICU) at the Uppsala University hospital, a tertiary hospital in Sweden and a total of 333 samples obtained from these patients during the ICU-stay. We determined their correlation with disease severity, organ failure, mortality and other blood parameters. Results H3, NE, cfDNA, GAS6 and AXL were increased in plasma of COVID-19 patients compared to controls. cfDNA and GAS6 decreased in time in in patients surviving to 30 days post ICU admission. Plasma H3 was a common feature of COVID-19 patients, detected in 40% of the patients at ICU admission. Although these measures were not predictive of the final outcome of the disease, they correlated well with parameters of tissue damage (H3 and cfDNA) and neutrophil counts (NE). A subset of samples displayed H3 processing, possibly due to proteolysis. Conclusions Elevated H3 and cfDNA levels in COVID-19 patients illustrate the severity of the cellular damage observed in critically ill COVID-19 patients. The increase in NE indicates the important role of neutrophil response and the process of NETosis in the disease. GAS6 appears as part of an early activated mechanism of response in Covid-19.<br />The study was supported through grants from the dedSciLifeLab/KAW national COVID-19 research program project grant (MH), by Scilifelab, the Knut and Alice Wallenberg Foundation and in part by the Swedish Research Council (RF, grant no 2014-02569 and 2014-07606), and the Netherlands Thrombosis Foundation (GN).
Details
- Database :
- OpenAIRE
- Journal :
- Digital.CSIC. Repositorio Institucional del CSIC, instname
- Accession number :
- edsair.doi.dedup.....3967b153f1e23a8ee2cdd462a901a6ae