Back to Search Start Over

Methods in the spatial deep learning: current status and future direction

Authors :
Bhogendra Mishra
Ashok Dahal
Nirajan Luintel
Tej Bahadur Shahi
Saroj Panthi
Shiva Pariyar
Bhoj Raj Ghimire
Department of Applied Earth Sciences
UT-I-ITC-4DEarth
Faculty of Geo-Information Science and Earth Observation
Source :
Spatial Information Research, 30(2), 215-232. Springer
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

A deep neural network (DNN), evolved from a traditional artificial neural network, has been seamlessly adapted for the spatial data domain over the years. Deep learning (DL) has been widely applied for a number of applications and a variety of thematic domains. This article reports on a systematic review of methods adapted in major DNN applications with remote sensing data published between 2010 and 2020 aiming to understand the major application area, a framework for model development and the prospect of DL application in spatial data analysis. It has been found that image fusion, change detection, scene classification, image segmentation, and feature detection are the most commonly used application areas. Based on the publication in these thematic areas, a generic framework has been devised to guide a model development using DL based on the methods followed in the past. Finally, recent trends and prospects in terms of data, method, and application of deep learning with remote sensing data are discussed. The review finds that while DL-based approaches have the potential to unfold hidden information, they face challenges in selecting the most appropriate data, methods, and model parameterizations which may hinder the performance. The increasing trend of application of DL in the spatial domain is expected to leverage its strength at its optimum to the research frontiers.

Details

ISSN :
23663294 and 23663286
Volume :
30
Database :
OpenAIRE
Journal :
Spatial Information Research
Accession number :
edsair.doi.dedup.....39600a868c4e00304270ffb7067c39bb