Back to Search Start Over

O-GlcNAc Transferase Inhibition Differentially Affects Breast Cancer Subtypes

Authors :
Kotryna Seip
Anna Barkovskaya
Harri M. Itkonen
Siver Andreas Moestue
Bylgja Hilmarsdottir
Gunhild Mari Mælandsmo
Source :
Scientific Reports, Scientific Reports, Vol 9, Iss 1, Pp 1-11 (2019)
Publication Year :
2019
Publisher :
Nature Publishing Group UK, 2019.

Abstract

Post-translational modification of intracellular proteins with a single N-acetylglucosamine sugar (O-GlcNAcylation) regulates signaling, proliferation, metabolism and protein stability. In breast cancer, expression of the enzyme that catalyzes O-GlcNAcylation – O-GlcNAc-transferase (OGT), and the extent of protein O-GlcNAcylation, are upregulated in tumor tissue, and correlate with cancer progression. Here we compare the significance of O-GlcNAcylation in a panel of breast cancer cells of different phenotypes. We find a greater dependency on OGT among triple-negative breast cancer (TNBC) cell lines, which respond to OGT inhibition by undergoing cell cycle arrest and apoptosis. Searching for the cause of this response, we evaluate the changes in the proteome that occur after OGT inhibition or knock-down, employing a reverse-phase protein array (RPPA). We identify transcriptional repressor - hairy and enhancer of split-1 (HES1) - as a mediator of the OGT inhibition response in the TNBC cells. Inhibition of OGT as well as the loss of HES1 results in potent cytotoxicity and apoptosis. The study raises a possibility of using OGT inhibition to potentiate DNA damage in the TNBC cells. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Details

Language :
English
ISSN :
20452322
Volume :
9
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....39424ba35c0e8232dce70983cad24b5f