Back to Search Start Over

Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier Mobilities for Capacitive Energy Storage

Authors :
Wenkai Zhong
Xiaodong Zhuang
Haiyan Mao
Yi Liu
Haimei Zheng
Kaiyue Jiang
Bing Sun
Qi Zheng
Jeffrey A. Reimer
Jian Zhang
Chongqing Yang
Cheng Chen
Xinle Li
Source :
Journal of the American Chemical Society. 143:17701-17707
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Covalent organic frameworks (COFs) with efficient charge transport and exceptional chemical stability are emerging as an import class of semiconducting materials for opto-/electronic devices and energy-related applications. However, the limited synthetic chemistry to access such materials and the lack of mechanistic understanding of carrier mobility greatly hinder their practical applications. Herein, we report the synthesis of three chemically stable polyarylether-based metallophthalocyanine COFs (PAE-PcM, M = Cu, Ni, and Co) and facile in situ growth of their thin films on various substrates (i.e., SiO2/Si, ITO, quartz) under solvothermal conditions. We show that PAE-PcM COFs thin films with van der Waals layered structures exhibit p-type semiconducting properties with the intrinsic mobility up to ∼19.4 cm2 V-1 s-1 and 4 orders of magnitude of increase in conductivity for PAE-PcCu film (0.2 S m-1) after iodine doping. Density functional theory calculations reveal that the carrier transport in the framework is anisotropic, with the out-of-plane hole transport along columnar stacked phthalocyanine more favorable. Furthermore, PAE-PcCo shows the redox behavior maximumly contributes ∼88.5% of its capacitance performance, giving rise to a high surface area normalized capacitance of ∼19 μF cm-2. Overall, this work not only offers fundamental understandings of electronic properties of polyarylether-based 2D COFs but also paves the way for their energy-related applications.

Details

ISSN :
15205126 and 00027863
Volume :
143
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....3941e03a7ef20e4dce7be996863ad709