Back to Search Start Over

The formation of reverse shocks in magnetized high energy density supersonic plasma flows

Authors :
J. Yuan
George Swadling
R. P. Drake
J. P. Chittenden
Andrea Ciardi
Lee Suttle
N. Kalmoni
Adam Clemens
S. N. Bland
Sergey Lebedev
M. Bennett
Francisco Suzuki-Vidal
Geoffrey Hall
G. C. Burdiak
L. Sheng
Adam Frank
Roland Smith
S. Patankar
Eric G. Blackman
Nicolas Niasse
Jack Hare
P. de Grouchy
David Burgess
Astronomy Unit [London] (AU)
Queen Mary University of London (QMUL)
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP)
Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS)
Cooperative Institute for Research in Environmental Sciences (CIRES)
University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA)
Blackett Laboratory
Imperial College London
Centre de recherches Paul Pascal (CRPP)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Instituto de Ciencias Nucleares [Mexico]
Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
École normale supérieure - Paris (ENS Paris)
Universidad Nacional Autónoma de México (UNAM)
Source :
Physics of Plasmas, Physics of Plasmas, 2014, 21 (5), pp.056305. ⟨10.1063/1.4874334⟩, Physics of Plasmas, American Institute of Physics, 2014, 21 (5), pp.056305. ⟨10.1063/1.4874334⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (ReM ∼ 50, MS ∼ 5, MA ∼ 8, Vflow ≈ 100 km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ∼c/ωpi from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.

Details

Language :
English
ISSN :
1070664X and 10897674
Database :
OpenAIRE
Journal :
Physics of Plasmas, Physics of Plasmas, 2014, 21 (5), pp.056305. ⟨10.1063/1.4874334⟩, Physics of Plasmas, American Institute of Physics, 2014, 21 (5), pp.056305. ⟨10.1063/1.4874334⟩
Accession number :
edsair.doi.dedup.....39409a5cad6233dc0daa201abde8cdc8