Back to Search Start Over

Approximation Enhancement for Stochastic Bayesian Inference

Authors :
Pierre Bessière
Joseph S. Friedman
Jacques Droulez
Jorge Lobo
Damien Querlioz
Institut d'électronique fondamentale (IEF)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Institut des Systèmes Intelligents et de Robotique (ISIR)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
AMAC
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
University of Coimbra
Source :
International Journal of Approximate Reasoning, International Journal of Approximate Reasoning, 2017, ⟨10.1016/j.ijar.2017.03.007⟩, International Journal of Approximate Reasoning, Elsevier, 2017, ⟨10.1016/j.ijar.2017.03.007⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; Advancements in autonomous robotic systems have been impeded by the lack of a specialized computational hardware that makes real-time decisions based on sensory inputs. We have developed a novel circuit structure that efficiently approximates naïve Bayesian inference with simple Muller C-elements. Using a stochastic computing paradigm, this system enablesreal-time approximate decision-making with an area-energy-delay product nearly one billiontimes smaller than a conventional general-purpose computer. In this paper, we propose severaltechniques to improve the approximation of Bayesian inference by reducing stochastic bitstream autocorrelation. We also evaluate the effectiveness of these techniques for various naïve inference tasks and discuss hardware considerations, concluding that these circuits enable approximate Bayesian inferences while retaining orders-of-magnitude hardware advantagescompared to conventional general-purpose computers.

Details

Language :
English
ISSN :
0888613X
Database :
OpenAIRE
Journal :
International Journal of Approximate Reasoning, International Journal of Approximate Reasoning, 2017, ⟨10.1016/j.ijar.2017.03.007⟩, International Journal of Approximate Reasoning, Elsevier, 2017, ⟨10.1016/j.ijar.2017.03.007⟩
Accession number :
edsair.doi.dedup.....391b92b17de3818668e0379d10800361
Full Text :
https://doi.org/10.1016/j.ijar.2017.03.007⟩