Back to Search Start Over

Local integrability results in harmonic analysis on reductive groups in large positive characteristic

Authors :
Raf Cluckers
Julia Gordon
Immanuel Halupczok
Laboratoire Paul Painlevé - UMR 8524 (LPP)
Centre National de la Recherche Scientifique (CNRS)-Université de Lille
Département de Mathématiques et Applications - ENS Paris (DMA)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Paul Painlevé (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS-PSL)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Source :
Annales Scientifiques de l'École Normale Supérieure, Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, 2014, 47 (6), pp.1163-1195. ⟨10.24033/asens.2236⟩, Annales Scientifiques de l'École Normale Supérieure, 2014, 47 (6), pp.1163-1195. ⟨10.24033/asens.2236⟩
Publication Year :
2014
Publisher :
Societe Mathematique de France, 2014.

Abstract

Let $G$ be a connected reductive algebraic group over a non-Archimedean local field $K$, and let $g$ be its Lie algebra. By a theorem of Harish-Chandra, if $K$ has characteristic zero, the Fourier transforms of orbital integrals are represented on the set of regular elements in $g(K)$ by locally constant functions, which, extended by zero to all of $g(K)$, are locally integrable. In this paper, we prove that these functions are in fact specializations of constructible motivic exponential functions. Combining this with the Transfer Principle for integrability [R. Cluckers, J. Gordon, I. Halupczok, "Transfer principles for integrability and boundedness conditions for motivic exponential functions", preprint arXiv:1111.4405], we obtain that Harish-Chandra's theorem holds also when $K$ is a non-Archimedean local field of sufficiently large positive characteristic. Under the hypothesis on the existence of the mock exponential map, this also implies local integrability of Harish-Chandra characters of admissible representations of $G(K)$, where $K$ is an equicharacteristic field of sufficiently large (depending on the root datum of $G$) characteristic.<br />Comment: Compared to v2/v3: some proofs simplified, the main statement generalized; slightly reorganized. Regarding the automatically generated text overlap note: it overlaps with the Appendix B (which is part of arXiv:1208.1945) written by us; the appendix and this article cross-reference each other, and since the set-up is very similar, some overlap is unavoidable

Details

ISSN :
18732151 and 00129593
Volume :
47
Database :
OpenAIRE
Journal :
Annales scientifiques de l'École normale supérieure
Accession number :
edsair.doi.dedup.....390c62d6ae77809606945d92b55f636b
Full Text :
https://doi.org/10.24033/asens.2236