Back to Search Start Over

Role of 14-3-3gamma in FE65-dependent gene transactivation mediated by the amyloid beta-protein precursor cytoplasmic fragment

Authors :
Akio Sumioka
Anning Lin
Shinsuke Nagaishi
Toshiharu Suzuki
Masayuki Miura
Tomohiro Yoshida
Source :
The Journal of biological chemistry. 280(51)
Publication Year :
2005

Abstract

The amyloid beta-protein precursor intracellular domain fragment (AICD) is generated from amyloid beta-protein precursor by consecutive cleavages. AICD is thought to activate FE65-dependent gene expression, but the molecular mechanism remains under consideration. We found that dimeric 14-3-3gamma bound both AICD and FE65 simultaneously, and this binding facilitated FE65-dependent gene transactivation by enhancing the association of AICD with FE65. 14-3-3gamma bound to the 667VTPEER672 motif of AICD and, most interestingly, the phosphorylation of AICD at Thr-668 in this motif inhibited the interaction with 14-3-3gamma and blocked gene transactivation. 14-3-3gamma required a sequence between the WW domain and the first phosphotyrosine interaction domain of FE65 for association with FE65. Deletion of this region blocked 14-3-3gamma binding to FE65 and suppressed AICD-mediated FE65-dependent gene transactivation, although the deletion mutant FE65 was still able to bind Tip60, a histone acetyltransferase that forms a complex with FE65 in the nucleus. Taken together, these data demonstrate that 14-3-3gamma facilitates FE65-dependent gene transactivation by forming a complex containing AICD and FE65, and phosphorylation of AICD down-regulates FE65-dependent gene transactivation through the dissociation of 14-3-3gamma and/or FE65 from AICD. Our findings suggest that multiple interactions of AICD with FE65 and 14-3-3gamma modulate FE65-dependent gene transactivation.

Details

ISSN :
00219258
Volume :
280
Issue :
51
Database :
OpenAIRE
Journal :
The Journal of biological chemistry
Accession number :
edsair.doi.dedup.....38def82604b6f39b3c049b3b0bc0d6bd