Back to Search Start Over

Motion Estimation by Deep Learning in 2D Echocardiography: Synthetic Dataset and Validation

Authors :
Ewan Evain
Yunyun Sun
Khuram Faraz
Damien Garcia
Eric Saloux
Bernhard L. Gerber
Mathieu De Craene
Olivier Bernard
Bernard, Olivier
Modeling & analysis for medical imaging and Diagnosis (MYRIAD)
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Imagerie Ultrasonore
Service de cardiologie et de pathologie vasculaire [CHU Caen]
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-CHU Caen
Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN)
Signalisation, électrophysiologie et imagerie des lésions d’ischémie-reperfusion myocardique (SEILIRM)
Normandie Université (NU)-Normandie Université (NU)
Université Catholique de Louvain = Catholic University of Louvain (UCL)
MedisysResearch Lab (Medisys)
Philips Research
UCL - SSS/IREC/CARD - Pôle de recherche cardiovasculaire
UCL - (SLuc) Service de pathologie cardiovasculaire
Source :
IEEE Transactions on Medical Imaging, IEEE Transactions on Medical Imaging, In press, ⟨10.1109/TMI.2022.3151606⟩, IEEE transactions on medical imaging, Vol. PP, no.999, p. 1-14 (2022)
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

International audience; Motion estimation in echocardiography plays an important role in the characterization of cardiac function, allowing the computation of myocardial deformation indices. However, there exist limitations in clinical practice, particularly with regard to the accuracy and robustness of measurements extracted from images. We therefore propose a novel deep learning solution for motion estimation in echocardiography. Our network corresponds to a modified version of PWC-Net which achieves high performance on ultrasound sequences. In parallel, we designed a novel simulation pipeline allowing the generation of a large amount of realistic B-mode sequences. These synthetic data, together with strategies during training and inference, were used to improve the performance of our deep learning solution, which achieved an average endpoint error of 0.07± 0.06 mm per frame and 1.20±0.67 mm between ED and ES on our simulated dataset. The performance of our method was further investigated on 30 patients from a publicly available clinical dataset acquired from a GE system. The method showed promise by achieving a mean absolute error of the global longitudinal strain of 2.5 ± 2.1% and a correlation of 0.77 compared to GLS derived from manual segmentation, much better than one of the most efficient methods in the state-of-the-art (namely the FFT-Xcorr block-matching method). We finally evaluated our method on an auxiliary dataset including 30 patients from another center and acquired with a different system. Comparable results were achieved, illustrating the ability of our method to maintain high performance regardless of the echocardiographic data processed.

Details

ISSN :
1558254X and 02780062
Volume :
41
Database :
OpenAIRE
Journal :
IEEE Transactions on Medical Imaging
Accession number :
edsair.doi.dedup.....38c27f314957831f0d8d5f85ae7528bc