Back to Search Start Over

Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function

Authors :
Elizabeth A. Middleton
E. Dale Abel
Trevor P. Fidler
Nicholas Dunne
Dipayan Chaudhuri
Andrew S. Weyrch
Trevor Funari
Robert A. Campbell
Enrique Balderas Angeles
Source :
Cell Reports, Vol 20, Iss 9, p 2277 (2017), Cell reports, Cell Reports, Vol 20, Iss 4, Pp 881-894 (2017), Cell Reports, Vol 21, Iss 6, p 1705 (2017)
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

Summary Anucleate platelets circulate in the blood to facilitate thrombosis and diverse immune functions. Platelet activation leading to clot formation correlates with increased glycogenolysis, glucose uptake, glucose oxidation, and lactic acid production. Simultaneous deletion of glucose transporter (GLUT) 1 and GLUT3 (double knockout [DKO]) specifically in platelets completely abolished glucose uptake. In DKO platelets, mitochondrial oxidative metabolism of non-glycolytic substrates, such as glutamate, increased. Thrombosis and platelet activation were decreased through impairment at multiple activation nodes, including Ca 2+ signaling, degranulation, and integrin activation. DKO mice developed thrombocytopenia, secondary to impaired pro-platelet formation from megakaryocytes, and increased platelet clearance resulting from cytosolic calcium overload and calpain activation. Systemic treatment with oligomycin, inhibiting mitochondrial metabolism, induced rapid clearance of platelets, with circulating counts dropping to zero in DKO mice, but not wild-type mice, demonstrating an essential role for energy metabolism in platelet viability. Thus, substrate metabolism is essential for platelet production, activation, and survival.

Details

ISSN :
22111247
Volume :
21
Database :
OpenAIRE
Journal :
Cell Reports
Accession number :
edsair.doi.dedup.....38627e62c3561e5440287b106bb2d8a2