Back to Search Start Over

Domain Adaptation for Learning Generator From Paired Few-Shot Data

Authors :
Chun-Chih Teng
Pin-Yu Chen
Wei-Chen Chiu
Source :
ICASSP
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

We propose a Paired Few-shot GAN (PFS-GAN) model for learning generators with sufficient source data and a few target data. While generative model learning typically needs large-scale training data, our PFS-GAN not only uses the concept of few-shot learning but also domain shift to transfer the knowledge across domains, which alleviates the issue of obtaining low-quality generator when only trained with target domain data. The cross-domain datasets are assumed to have two properties: (1) each target-domain sample has its source-domain correspondence and (2) two domains share similar content information but different appearance. Our PFS-GAN aims to learn the disentangled representation from images, which composed of domain-invariant content features and domain-specific appearance features. Furthermore, a relation loss is introduced on the content features while shifting the appearance features to increase the structural diversity. Extensive experiments show that our method has better quantitative and qualitative results on the generated target-domain data with higher diversity in comparison to several baselines.<br />accepted in ICASSP 2021

Details

Database :
OpenAIRE
Journal :
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Accession number :
edsair.doi.dedup.....385bcdb3bb841df8909c06932767417d
Full Text :
https://doi.org/10.1109/icassp39728.2021.9414702