Back to Search Start Over

Perturbation of Short Hydrogen Bonds in Photoactive Yellow Protein via Noncanonical Amino Acid Incorporation

Authors :
Robert M. Parrish
Steven G. Boxer
Johan H. Both
Todd J. Martínez
Yufan Wu
Benjamin Thomson
Source :
J Phys Chem B
Publication Year :
2019
Publisher :
American Chemical Society (ACS), 2019.

Abstract

Photoactive yellow protein (PYP) is a small photoreceptor protein that has two unusually short hydrogen bonds between the deprotonated p-coumaric acid chromophore and two amino acids, a tyrosine and a glutamic acid. This has led to considerable debate as to whether the glutamic acid-chromophore hydrogen bond is a low barrier hydrogen bond, with conflicting results in the literature. We have modified the pK(a) of the tyrosine by amber suppression and of the chromophore by chemical substitution. X-ray crystal structures of these modified proteins are nearly identical to the wild-type protein, so the heavy atom distance between proton donor and acceptor is maintained, even though these modifications change the relative proton affinity between donor and acceptor. Despite a considerable change in relative proton affinity, the NMR chemical shifts of the hydrogen-bonded protons are only moderately affected. QM/MM calculations were used to explore the protons’ potential energy surface and connect the calculated proton position with empirically measured proton chemical shifts. The results are inconsistent with a low barrier hydrogen bond but in all cases are consistent with a localized proton, suggesting an ionic hydrogen bond rather than a low barrier hydrogen bond.

Details

ISSN :
15205207 and 15206106
Volume :
123
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry B
Accession number :
edsair.doi.dedup.....385687533440676106995c2a7fb080e0