Back to Search Start Over

Cell adhesion tunes inflammatory TPL2 kinase signal transduction

Authors :
Maria Vougioukalaki
Konstantina Georgila
Emmanouil I. Athanasiadis
Aristides G. Eliopoulos
Source :
Cellular and Molecular Life Sciences. 79
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Signaling through adhesion-related molecules is important for cancer growth and metastasis and cancer cells are resistant to anoikis, a form of cell death ensued by cell detachment from the extracellular matrix. Herein, we report that detached carcinoma cells and immortalized fibroblasts display defects in TNF and CD40 ligand (CD40L)-induced MEK-ERK signaling. Cell detachment results in reduced basal levels of the MEK kinase TPL2, compromises TPL2 activation and sensitizes carcinoma cells to death-inducing receptor ligands, mimicking the synthetic lethal interactions between TPL2 inactivation and TNF or CD40L stimulation. Focal Adhesion Kinase (FAK), which is activated in focal adhesions and mediates anchorage-dependent survival signaling, was found to sustain steady state TPL2 protein levels and to be required for TNF-induced TPL2 signal transduction. We show that when FAK levels are reduced, as seen in certain types of malignancy or malignant cell populations, the formation of cIAP2:RIPK1 complexes increases, leading to reduced TPL2 expression levels by a dual mechanism: first, by the reduction in the levels of NF-κΒ1 which is required for TPL2 stability; second, by the engagement of an RelA NF-κΒ pathway that elevates interleukin-6 production, leading to activation of STAT3 and its transcriptional target SKP2 which functions as a TPL2 E3 ubiquitin ligase. These data underscore a new mode of regulation of TNF family signal transduction on the TPL2-MEK-ERK branch by adhesion-related molecules that may have important ramifications for cancer therapy.

Details

ISSN :
14209071 and 1420682X
Volume :
79
Database :
OpenAIRE
Journal :
Cellular and Molecular Life Sciences
Accession number :
edsair.doi.dedup.....383c61c6e59c862b843b04b314aa42a1
Full Text :
https://doi.org/10.1007/s00018-022-04130-7