Back to Search Start Over

Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content

Authors :
Blaine R. Roberts
Roman S. Polishchuk
Vladimir Lupashin
Victor Faundez
Daniel N. Cox
Alysia D. Vrailas-Mortimer
Gretchen Macias Mendez
Stephanie A. Zlatic
Cortnie Hartwig
Avanti Gokhale
Mafalda Concilli
Laura Palmer
Nicole Shearing
Jacob McArthy
Savanah Taylor
Lindsey Margewich
Samantha Rudin-Rush
Ramon A. Jorquera
Christie Sapp Savas
Shatabdi Bhattacharjee
Amanda A. H. Freeman
Erica Werner
Source :
J Neurosci
Publication Year :
2020
Publisher :
Society for Neuroscience, 2020.

Abstract

Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption ofDrosophilacopper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENTMenkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.

Details

ISSN :
15292401 and 02706474
Volume :
41
Database :
OpenAIRE
Journal :
The Journal of Neuroscience
Accession number :
edsair.doi.dedup.....383c44d1ac297837410e83e4223bfea3
Full Text :
https://doi.org/10.1523/jneurosci.1284-20.2020