Back to Search
Start Over
Adipocyte hypertrophy parallels alterations of mitochondrial status in a cell model for adipose tissue dysfunction in obesity
- Publication Year :
- 2021
- Publisher :
- Elsevier B.V., 2021.
-
Abstract
- Aims Adipocyte hypertrophy is the main cause of obesity. A deeper understanding of the molecular mechanisms regulating adipocyte dysfunction may help to plan strategies to treat/prevent obesity and its metabolic complications. Here, we investigated in vitro the molecular alterations associated with early adipocyte hypertrophy, focusing on mitochondrial dysfunction. Main methods As model of adipocyte hypertrophy, we employed 3T3-L1 preadipocytes firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids. As a function of differentiation and hypertrophy, we assessed triglyceride content, lipid droplet size, radical homeostasis by spectrophotometry and microscopy, as well as the expression of PPARĪ³, adiponectin and metallothioneins. Mitochondrial status was investigated by electron microscopy, oxygraph 2 k (O2K) high-resolution respirometry, fluorimetry and western blot. Key findings Compared to mature adipocytes, hypertrophic adipocytes showed increased triglyceride accumulation and lipid peroxidation, larger or unique lipid droplet, up-regulated expression of PPARĪ³, adiponectin and metallothioneins. At mitochondrial level, early-hypertrophic adipocytes exhibited: (i) impaired mitochondrial oxygen consumption with parallel reduction in the mitochondrial complexes; (ii) no changes in citrate synthase and HSP60 expression, and in the inner mitochondrial membrane polarization; (iii) no stimulation of mitochondrial fatty acid oxidation. Our findings indicate that the content, integrity, and catabolic activity of mitochondria were rather unchanged in early hypertrophic adipocytes, while oxygen consumption and oxidant production were altered. Significance In the model of early adipocyte hypertrophy exacerbated oxidative stress and impaired mitochondrial respiration were observed, likely depending on reduction in the mitochondrial complexes, without changes in mitochondrial mass and integrity.
- Subjects :
- 0301 basic medicine
medicine.medical_specialty
Adipose tissue
Mitochondrion
030226 pharmacology & pharmacy
General Biochemistry, Genetics and Molecular Biology
Electron Transport
Mice
03 medical and health sciences
chemistry.chemical_compound
Oxygen Consumption
0302 clinical medicine
Adipocyte hypertrophy
3T3-L1 Cells
Adipocyte
Internal medicine
Lipid droplet
Adipocytes
medicine
Animals
Citrate synthase
Obesity
General Pharmacology, Toxicology and Pharmaceutics
Inner mitochondrial membrane
biology
Adiponectin
Chemistry
Cell Differentiation
Hypertrophy
General Medicine
Mitochondria
Mitochondrial respiration
Oxidative stress
030104 developmental biology
Endocrinology
Adipose Tissue
biology.protein
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....381ae5799770ebb23bfdb4aea5f06d25