Back to Search Start Over

Formation of Episodic Magnetically Driven Radiatively Cooled Plasma Jets in the Laboratory

Authors :
Gareth Hall
Simon C. Bott
Eric G. Blackman
Adam Harvey-Thompson
Thomas P. Ray
Andrea Ciardi
Francisco Suzuki-Vidal
Sergey Lebedev
S. N. Bland
C. Ning
Alberto Marocchino
Alejandro Frank
Chantal Stehlé
J. P. Chittenden
Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, (CCM)
Imperial College London
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP)
Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS)
Department of Physics and Astronomy, University of Rochester
Center for Energy Research, University of California, San Diego
Dublin Institute for Advanced Studies (DIAS)
Source :
Astrophysics and Space Science, Astrophysics and Space Science, 2009, 322, pp.19-23. ⟨10.1007/s10509-009-9981-1⟩
Publication Year :
2009

Abstract

We report on experiments in which magnetically driven radiatively cooled plasma jets were produced by a 1 MA, 250 ns current pulse on the MAGPIE pulsed power facility. The jets were driven by the pressure of a toroidal magnetic field in a ''magnetic tower'' jet configuration. This scenario is characterized by the formation of a magnetically collimated plasma jet on the axis of a magnetic ''bubble'', confined by the ambient medium. The use of a radial metallic foil instead of the radial wire arrays employed in our previous work allows for the generation of episodic magnetic tower outflows which emerge periodically on timescales of ~30 ns. The subsequent magnetic bubbles propagate with velocities reaching ~300 km/s and interact with previous eruptions leading to the formation of shocks.<br />6 pages, 5 figures. Accepted for publication in Astrophysics & Space Science

Details

Language :
English
ISSN :
0004640X and 1572946X
Database :
OpenAIRE
Journal :
Astrophysics and Space Science, Astrophysics and Space Science, 2009, 322, pp.19-23. ⟨10.1007/s10509-009-9981-1⟩
Accession number :
edsair.doi.dedup.....37e9f9fdc4c4721697f11c3a9ef24e86