Back to Search
Start Over
A new outlook on cofiniteness
- Source :
- Kyoto J. Math. 60, no. 3 (2020), 1033-1045
- Publication Year :
- 2020
- Publisher :
- Duke University Press, 2020.
-
Abstract
- Let $\mathfrak{a}$ be an ideal of a commutative noetherian (not necessarily local) ring $R$. In the case $\cd(\mathfrak{a},R)\leq 1$, we show that the subcategory of $\mathfrak{a}$-cofinite $R$-modules is abelian. Using this and the technique of way-out functors, we show that if $\cd(\mathfrak{a},R)\leq 1$, or $\dim(R/\mathfrak{a}) \leq 1$, or $\dim(R) \leq 2$, then the local cohomology module $H^{i}_{\mathfrak{a}}(X)$ is $\mathfrak{a}$-cofinite for every $R$-complex $X$ with finitely generated homology modules and every $i \in \mathbb{Z}$. We further answer Question 1.3 in the three aforementioned cases, and reveal a correlation between Questions 1.1, 1.2, and 1.3.<br />Comment: It will appear in Kyoto Journal of Mathematics
- Subjects :
- 13D45
Cofiniteness
cohomological dimension
Local cohomology
Homology (mathematics)
Commutative Algebra (math.AC)
01 natural sciences
Combinatorics
0103 physical sciences
FOS: Mathematics
Ideal (ring theory)
0101 mathematics
Abelian group
Mathematics::Representation Theory
Mathematics
Derived category
Ring (mathematics)
Mathematics::Commutative Algebra
13D45, 13D07, 13D09
010102 general mathematics
derived category
Mathematics - Commutative Algebra
Abelian category
local cohomology module
local homology module
13D07
010307 mathematical physics
13D09
dualizing complex
cofinite module
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Kyoto J. Math. 60, no. 3 (2020), 1033-1045
- Accession number :
- edsair.doi.dedup.....37e6491b3a8eb83aebf4a323431aa5a6