Back to Search Start Over

A new outlook on cofiniteness

Authors :
Kamran Divaani-Aazar
Hossein Faridian
Massoud Tousi
Source :
Kyoto J. Math. 60, no. 3 (2020), 1033-1045
Publication Year :
2020
Publisher :
Duke University Press, 2020.

Abstract

Let $\mathfrak{a}$ be an ideal of a commutative noetherian (not necessarily local) ring $R$. In the case $\cd(\mathfrak{a},R)\leq 1$, we show that the subcategory of $\mathfrak{a}$-cofinite $R$-modules is abelian. Using this and the technique of way-out functors, we show that if $\cd(\mathfrak{a},R)\leq 1$, or $\dim(R/\mathfrak{a}) \leq 1$, or $\dim(R) \leq 2$, then the local cohomology module $H^{i}_{\mathfrak{a}}(X)$ is $\mathfrak{a}$-cofinite for every $R$-complex $X$ with finitely generated homology modules and every $i \in \mathbb{Z}$. We further answer Question 1.3 in the three aforementioned cases, and reveal a correlation between Questions 1.1, 1.2, and 1.3.<br />Comment: It will appear in Kyoto Journal of Mathematics

Details

Language :
English
Database :
OpenAIRE
Journal :
Kyoto J. Math. 60, no. 3 (2020), 1033-1045
Accession number :
edsair.doi.dedup.....37e6491b3a8eb83aebf4a323431aa5a6