Back to Search Start Over

Bach-flat gradient steady Ricci solitons

Authors :
Lorenzo Mazzieri
Carlo Mantegazza
Huai-Dong Cao
Qiang Chen
Giovanni Catino
HUAI DONG, Cao
Giovanni, Catino
Qiang, Chen
Mantegazza, Carlo Maria
Mazzieri, Lorenzo
Lorenzo, Mazzieri
Publication Year :
2014

Abstract

In this paper we prove that any n-dimensional (n ≥ 4) complete Bach-flat gradient steady Ricci soliton with positive Ricci curvature is isometric to the Bryant soliton. We also show that a three-dimensional gradient steady Ricci soliton with divergence-free Bach tensor is either flat or isometric to the Bryant soliton. In particular, these results improve the corresponding classification theorems for complete locally conformally flat gradient steady Ricci solitons in Cao and Chen (Trans Am Math Soc 364:2377–2391, 2012) and Catino and Mantegazza (Ann Inst Fourier 61(4):1407–1435, 2011).

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....37e5b414f4ad24737c2d5a8de210187e