Back to Search Start Over

Origin of the Voltage Hysteresis of MgH2 Electrodes in Lithium Batteries

Authors :
Marie-Liesse Doublet
Guido Gigli
Sergio Brutti
Daniele Meggiolaro
Priscilla Reale
Annalisa Paolone
Reale, P.
Source :
Journal of physical chemistry. C 119 (2015): 17044–17052. doi:10.1021/acs.jpcc.5b04615, info:cnr-pdr/source/autori:D. Meggiolaro; G. Gigli; A. Paolone; P. Reale; M.L. Doublet; S. Brutti/titolo:Origin of the Voltage Hysteresis of MgH2 Electrodes in Lithium Batteries/doi:10.1021%2Facs.jpcc.5b04615/rivista:Journal of physical chemistry. C/anno:2015/pagina_da:17044/pagina_a:17052/intervallo_pagine:17044–17052/volume:119
Publication Year :
2015
Publisher :
American Chemical Society (ACS), 2015.

Abstract

Magnesium hydride has been proposed as innovative anode material for Li ion cells due to its large theoretical capacity and high-energy efficiency compared to other conversion materials. In this work, we report a combined experimental-theoretical study about the origin of voltage hysteresis in the conversion reaction of MgH2 in lithium cells. Experimentally, the extent of the thermodynamic voltage hysteresis in the first galvanostatic discharge-charge cycle has been determined by the GITT technique and decoupled from the kinetic overpotentials. Theoretically, the origin of the thermodynamic voltage hysteresis has been evaluated and studied by means density functional theory calculations within the supercell approach. Different elementary reactions have been modeled upon reduction and oxidation on the surfaces of the active phases (i.e., MgH2, LiH, and Mg), and the associated theoretical voltages have been predicted. Experimental and theoretical results have been compared and discussed to draw a comprehensive description of the elementary surface reactions of the MgH2 conversion in lithium cells. © 2015 American Chemical Society.

Details

ISSN :
19327455 and 19327447
Volume :
119
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry C
Accession number :
edsair.doi.dedup.....37b3ee57c6d23f13a673b33a6e1185e1
Full Text :
https://doi.org/10.1021/acs.jpcc.5b04615