Back to Search
Start Over
Grapevine ABA receptor VvPYL1 regulates root hair development in Transgenic Arabidopsis
- Source :
- Plant Physiology and Biochemistry. 149:190-200
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- Root architecture is very important for plant growth. In this study, we characterized the process of root formation in grapevine (Vitis vinifera L.). Continuous observation of root morphology during development revealed that the establishment of root system could be divided into five stages: initial cultivation (stage I), preliminary development (stage II), even change (stage III), root system formation (stage IV), and root architecture stability (stage V). The level of abscisic acid (ABA) increased from stages II to IV and was stable at stage V. Quantitative expression analysis of 11 genes encoding ABA-related rate-limiting enzymes in different tissues showed that the expression of VvPYL1 was the highest in roots. Spatiotemporal expression analysis showed that VvPYL1 was highly expressed during stages II and III. Furthermore, VvPYL1 was highly expressed in lateral roots of grapevine seedlings in tissue culture. Overexpression of VvPYL1 in Arabidopsis thaliana resulted in longer root hairs compared with wild-type plants. Moreover, the root hair length of transgenic lines was hypersensitive to exogenously applied ABA. Additionally, VvPYL1 overexpressing plants showed greater drought tolerance and longer root hairs than wild-type plants under osmotic stress. These results suggest that VvPYL1 may play a key role in root development and drought resistance.
- Subjects :
- Osmotic shock
Physiology
Drought tolerance
Arabidopsis
Plant Science
Root system
Root hair
Plant Roots
chemistry.chemical_compound
Tissue culture
Gene Expression Regulation, Plant
Stress, Physiological
Genetics
Arabidopsis thaliana
Vitis
Abscisic acid
Plant Proteins
biology
fungi
food and beverages
Plants, Genetically Modified
biology.organism_classification
Droughts
Cell biology
chemistry
Seedlings
Abscisic Acid
Subjects
Details
- ISSN :
- 09819428
- Volume :
- 149
- Database :
- OpenAIRE
- Journal :
- Plant Physiology and Biochemistry
- Accession number :
- edsair.doi.dedup.....37a5d57e4a92333853bd1393da4aadf7
- Full Text :
- https://doi.org/10.1016/j.plaphy.2020.02.008