Back to Search Start Over

Extraction of radiographic findings from unstructured thoracoabdominal computed tomography reports using convolutional neural network based natural language processing

Authors :
Jing Wang
Lohendran Baskaran
Gabriel Maliakal
Gurpreet Singh
Benjamin C. Lee
Zahra Fatima
Subhi J. Al'Aref
Daria Larine
James K. Min
Leslee J. Shaw
Evan Sholle
Mohit Pandey
Alexander R. van Rosendael
Zhuoran Xu
Source :
PLoS ONE, Vol 15, Iss 7, p e0236827 (2020), PLoS ONE
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

BackgroundHeart failure (HF) is a major cause of morbidity and mortality. However, much of the clinical data is unstructured in the form of radiology reports, while the process of data collection and curation is arduous and time-consuming.PurposeWe utilized a machine learning (ML)-based natural language processing (NLP) approach to extract clinical terms from unstructured radiology reports. Additionally, we investigate the prognostic value of the extracted data in predicting all-cause mortality (ACM) in HF patients.Materials and methodsThis observational cohort study utilized 122,025 thoracoabdominal computed tomography (CT) reports from 11,808 HF patients obtained between 2008 and 2018. 1,560 CT reports were manually annotated for the presence or absence of 14 radiographic findings, in addition to age and gender. Thereafter, a Convolutional Neural Network (CNN) was trained, validated and tested to determine the presence or absence of these features. Further, the ability of CNN to predict ACM was evaluated using Cox regression analysis on the extracted features.Results11,808 CT reports were analyzed from 11,808 patients (mean age 72.8 ± 14.8 years; 52.7% (6,217/11,808) male) from whom 3,107 died during the 10.6-year follow-up. The CNN demonstrated excellent accuracy for retrieval of the 14 radiographic findings with area-under-the-curve (AUC) ranging between 0.83-1.00 (F1 score 0.84-0.97). Cox model showed the time-dependent AUC for predicting ACM was 0.747 (95% confidence interval [CI] of 0.704-0.790) at 30 days.ConclusionAn ML-based NLP approach to unstructured CT reports demonstrates excellent accuracy for the extraction of predetermined radiographic findings, and provides prognostic value in HF patients.

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
7
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....379ca5ddc82ebdfdeafe1112898160d6