Back to Search Start Over

Rényi Divergence and Kullback-Leibler Divergence

Authors :
Peter Harremoës
Tim van Erven
Model selection in statistical learning (SELECT)
Laboratoire de Mathématiques d'Orsay (LMO)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Département de Mathématiques [ORSAY]
Université Paris-Sud - Paris 11 (UP11)
Niels Brock Copenhagen Business College
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Mathématiques d'Orsay (LMO)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Source :
IEEE Transactions on Information Theory. 60:3797-3820
Publication Year :
2014
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2014.

Abstract

R\'enyi divergence is related to R\'enyi entropy much like Kullback-Leibler divergence is related to Shannon's entropy, and comes up in many settings. It was introduced by R\'enyi as a measure of information that satisfies almost the same axioms as Kullback-Leibler divergence, and depends on a parameter that is called its order. In particular, the R\'enyi divergence of order 1 equals the Kullback-Leibler divergence. We review and extend the most important properties of R\'enyi divergence and Kullback-Leibler divergence, including convexity, continuity, limits of $\sigma$-algebras and the relation of the special order 0 to the Gaussian dichotomy and contiguity. We also show how to generalize the Pythagorean inequality to orders different from 1, and we extend the known equivalence between channel capacity and minimax redundancy to continuous channel inputs (for all orders) and present several other minimax results.<br />Comment: To appear in IEEE Transactions on Information Theory

Details

ISSN :
15579654 and 00189448
Volume :
60
Database :
OpenAIRE
Journal :
IEEE Transactions on Information Theory
Accession number :
edsair.doi.dedup.....3774bdaf1a5e7f6a66ac3b797bd2dbfa