Back to Search Start Over

On the stability of the Ginzburg-Landau vortex

Authors :
Gravejat, Philippe
Pacherie, Eliot
Smets, Didier
Analyse, Géométrie et Modélisation (AGM - UMR 8088)
Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
NYUAD Research Institute
NYUAbu Dhabi
Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

We introduce a functional framework taylored to investigate the minimality and stability properties of the Ginzburg-Landau vortex of degree one on the whole plane. We prove that a renormalized Ginzburg-Landau energy is well-defined in that framework and that the vortex is its unique global minimizer up to the invariances by translation and phase shift. Our main result is a nonlinear coercivity estimate for the renormalized energy around the vortex, from which we can deduce its orbital stability as a solution to the Gross-Pitaevskii equation, the natural Hamiltonian evolution equation associated to the Ginzburg-Landau energy.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....37640875afd2564adc240b3e9fb32eaf
Full Text :
https://doi.org/10.48550/arxiv.2106.02511