Back to Search Start Over

Whole exome sequencing of wild-derived inbred strains of mice improves power to link phenotype and genotype

Authors :
Sara Keeble
Khalid Belkhir
Peter L. Chang
François Bonhomme
Matthew D. Dean
Jeffrey M. Good
Pierre Boursot
Annie Orth
Erica L. Larson
Brice A. J. Sarver
Emily Emiko Konishi Kopania
Institut des Sciences de l'Evolution de Montpellier (UMR ISEM)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE)
Source :
Mammalian Genome, Mammalian Genome, 2017, 28 (9-10), pp.416-425. ⟨10.1007/s00335-017-9704-9⟩, Mammalian Genome, Springer Verlag, 2017, 28 (9-10), pp.416-425. ⟨10.1007/s00335-017-9704-9⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

The house mouse is a powerful model to dissect the genetic basis of phenotypic variation, and serves as a model to study human diseases. Despite a wealth of discoveries, most classical laboratory strains have captured only a small fraction of genetic variation known to segregate in their wild progenitors, and existing strains are often related to each other in complex ways. Inbred strains of mice independently derived from natural populations have the potential to increase power in genetic studies with the addition of novel genetic variation. Here, we perform exome-enrichment and high-throughput sequencing (~8× coverage) of 26 wild-derived strains known in the mouse research community as the "Montpellier strains." We identified 1.46 million SNPs in our dataset, approximately 19% of which have not been detected from other inbred strains. This novel genetic variation is expected to contribute to phenotypic variation, as they include 18,496 nonsynonymous variants and 262 early stop codons. Simulations demonstrate that the higher density of genetic variation in the Montpellier strains provides increased power for quantitative genetic studies. Inasmuch as the power to connect genotype to phenotype depends on genetic variation, it is important to incorporate these additional genetic strains into future research programs.

Details

Language :
English
ISSN :
09388990 and 14321777
Database :
OpenAIRE
Journal :
Mammalian Genome, Mammalian Genome, 2017, 28 (9-10), pp.416-425. ⟨10.1007/s00335-017-9704-9⟩, Mammalian Genome, Springer Verlag, 2017, 28 (9-10), pp.416-425. ⟨10.1007/s00335-017-9704-9⟩
Accession number :
edsair.doi.dedup.....375cdfe0141d95c042b85e342e9d1cca
Full Text :
https://doi.org/10.1007/s00335-017-9704-9⟩