Back to Search Start Over

Conventional vs machine learning-based treatment planning in prostate brachytherapy: Results of a Phase I randomized controlled trial

Authors :
Mackenzie Smith
Chia-Lin Tseng
Mark Semple
Ananth Ravi
Lucas C. Mendez
Melanie Davidson
Gerard Morton
Andrew Loblaw
Alexandru Nicolae
Lin Lu
Hans T. Chung
Source :
Brachytherapy. 19(4)
Publication Year :
2019

Abstract

Purpose The purpose of this study was to evaluate the noninferiority of Day 30 dosimetry between a machine learning–based treatment planning system for prostate low-dose-rate (LDR) brachytherapy and the conventional, manual planning technique. As a secondary objective, the impact of planning technique on clinical workflow efficiency was also evaluated. Materials and Methods 41 consecutive patients who underwent I-125 LDR monotherapy for low- and intermediate-risk prostate cancer were accrued into this single-institution study between 2017 and 2018. Patients were 1:1 randomized to receive treatment planning using a machine learning–based prostate implant planning algorithm (PIPA system) or conventional, manual technique. Treatment plan modifications by the radiation oncologist were evaluated by computing the Dice coefficient of the prostate V150% isodose volume between either the PIPA—or conventional—and final approved plans. Additional evaluations between groups evaluated the total planning time and dosimetric outcomes at preimplant and Day 30. Results 21 and 20 patients were treated using the PIPA and conventional techniques, respectively. No significant differences were observed in preimplant or Day 30 prostate D90%, V100%, rectum V100, or rectum D1cc between PIPA and conventional techniques. Although the PIPA group had a larger proportion of patients with plans requiring no modifications (Dice = 1.00), there was no significant difference between the magnitude of modifications between each arm. There was a large significant advantage in mean planning time for the PIPA arm (2.38 ± 0.96 min) compared with the conventional (43.13 ± 58.70 min) technique (p >> 0.05). Conclusions A machine learning–based planning workflow for prostate LDR brachytherapy has the potential to offer significant time savings and operational efficiencies, while producing noninferior postoperative dosimetry to that of expert, conventional treatment planners.

Details

ISSN :
18731449
Volume :
19
Issue :
4
Database :
OpenAIRE
Journal :
Brachytherapy
Accession number :
edsair.doi.dedup.....373aa780406a2d4333d73f36202d8935