Back to Search
Start Over
A novel anodic electrochemiluminescence behavior of sulfur-doped carbon nitride nanosheets in the presence of nitrogen-doped carbon dots and its application for detecting folic acid
- Source :
- Analytical and Bioanalytical Chemistry. 411:7137-7146
- Publication Year :
- 2019
- Publisher :
- Springer Science and Business Media LLC, 2019.
-
Abstract
- The application of carbon dots as a coreactant for Ru(bpy)32+ (where bpy is 2,2'-bipyridine) electrochemiluminescence (ECL) has been widely studied. However, the high cost of Ru(bpy)32+ and its derivatives has prohibited its widespread use in ECL biosensors. Herein, a novel anodic ECL system based on sulfur-doped graphitic carbon nitride nanosheets (S-g-C3N4 NSs) and nitrogen-doped carbon dots (N-CDs) is presented. In this ECL system, N-CDs serve as a new ECL coreactant that can significantly enhance the anodic ECL signal of S-g-C3N4 NSs (approximately 83 times) under optimal conditions. The possible ECL response mechanism of the S-g-C3N4 NSs/N-CDs system is proposed in detail on the basis of cyclic voltammograms, ECL-time curves, and ECL spectra. Furthermore, the ECL signal of the S-g-C3N4 NSs/N-CDs system was quenched by folic acid (FA), which was chosen as a model analyte to study the potential application of the new ECL system. The ECL intensity decreased linearly with the concentration of FA in the range from 0.05 to 200 μM. The detection limit for FA measurement is 16 nM (signal-to-noise ratio of 3). The proposed new ECL system has many advantages over traditional approaches, such as low toxicity and excellent biocompatibility. Especially, the proposed approach can detect FA in diluted human serum samples with satisfactory recoveries, indicating promising application for bioanalysis. Graphical abstract.
- Subjects :
- Analyte
Luminescence
Materials science
Nitrogen
Inorganic chemistry
chemistry.chemical_element
Biosensing Techniques
02 engineering and technology
Nitride
01 natural sciences
Biochemistry
Analytical Chemistry
chemistry.chemical_compound
Bipyridine
Folic Acid
X-Ray Diffraction
Limit of Detection
Nitriles
Spectroscopy, Fourier Transform Infrared
Humans
Electrochemiluminescence
Electrodes
Detection limit
010401 analytical chemistry
Graphitic carbon nitride
Electrochemical Techniques
021001 nanoscience & nanotechnology
Carbon
Nanostructures
0104 chemical sciences
chemistry
0210 nano-technology
Biosensor
Sulfur
Subjects
Details
- ISSN :
- 16182650 and 16182642
- Volume :
- 411
- Database :
- OpenAIRE
- Journal :
- Analytical and Bioanalytical Chemistry
- Accession number :
- edsair.doi.dedup.....36d3a956e56a756dfb409e329c4e8898
- Full Text :
- https://doi.org/10.1007/s00216-019-02088-3