Back to Search
Start Over
HybridPose: 6D Object Pose Estimation Under Hybrid Representations
- Source :
- CVPR
- Publication Year :
- 2020
- Publisher :
- IEEE, 2020.
-
Abstract
- We introduce HybridPose, a novel 6D object pose estimation approach. HybridPose utilizes a hybrid intermediate representation to express different geometric information in the input image, including keypoints, edge vectors, and symmetry correspondences. Compared to a unitary representation, our hybrid representation allows pose regression to exploit more and diverse features when one type of predicted representation is inaccurate (e.g., because of occlusion). Different intermediate representations used by HybridPose can all be predicted by the same simple neural network, and outliers in predicted intermediate representations are filtered by a robust regression module. Compared to state-of-the-art pose estimation approaches, HybridPose is comparable in running time and accuracy. For example, on Occlusion Linemod dataset, our method achieves a prediction speed of 30 fps with a mean ADD(-S) accuracy of 47.5%, representing a state-of-the-art performance. The implementation of HybridPose is available at https://github.com/chensong1995/HybridPose.
- Subjects :
- FOS: Computer and information sciences
0209 industrial biotechnology
Artificial neural network
business.industry
Computer science
Computer Vision and Pattern Recognition (cs.CV)
Computer Science - Computer Vision and Pattern Recognition
Pattern recognition
02 engineering and technology
020901 industrial engineering & automation
Robustness (computer science)
Outlier
0202 electrical engineering, electronic engineering, information engineering
020201 artificial intelligence & image processing
Artificial intelligence
business
Pose
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
- Accession number :
- edsair.doi.dedup.....36ba0a3f0737d47de94402219fbaf1df