Back to Search Start Over

Obstructions for matroids of path-width at most k and graphs of linear rank-width at most k

Authors :
Kant��, Mamadou Moustapha
Kim, Eun Jung
Kwon, O-joung
Oum, Sang-il
Kim, Eunjung
Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS)
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA)
Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Université Clermont Auvergne (UCA)
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Incheon National University
Department of Mathematical Sciences, KAIST
Korea Advanced Institute of Science and Technology (KAIST)
Centre National de la Recherche Scientifique (CNRS)
Institute for Basic Science [Daejeon] (IBS)
Source :
Journal of Combinatorial Theory, Series B, Journal of Combinatorial Theory, Series B, 2023, 160, pp.15-35. ⟨10.1016/j.jctb.2022.12.004⟩, STACS 2022, STACS 2022, Mar 2022, Marseille, France
Publication Year :
2021

Abstract

Every minor-closed class of matroids of bounded branch-width can be characterized by a list of excluded minors, but unlike graphs, this list may need to be infinite in general. However, for each fixed finite field $\mathbb F$, the list needs to contain only finitely many $\mathbb F$-representable matroids, due to the well-quasi-ordering of $\mathbb F$-representable matroids of bounded branch-width under taking matroid minors [J. F. Geelen, A. M. H. Gerards, and G. Whittle (2002)]. But this proof is non-constructive and does not provide any algorithm for computing these $\mathbb F$-representable excluded minors in general. We consider the class of matroids of path-width at most $k$ for fixed $k$. We prove that for a finite field $\mathbb F$, every $\mathbb F$-representable excluded minor for the class of matroids of path-width at most $k$ has at most $2^{|\mathbb{F}|^{O(k^2)}}$ elements. We can therefore compute, for any integer $k$ and a fixed finite field $\mathbb F$, the set of $\mathbb F$-representable excluded minors for the class of matroids of path-width $k$, and this gives as a corollary a polynomial-time algorithm for checking whether the path-width of an $\mathbb F$-represented matroid is at most $k$. We also prove that every excluded pivot-minor for the class of graphs having linear rank-width at most $k$ has at most $2^{2^{O(k^2)}}$ vertices, which also results in a similar algorithmic consequence for linear rank-width of graphs.<br />19 pages; slightly revised

Details

Language :
English
ISSN :
00958956 and 10960902
Database :
OpenAIRE
Journal :
Journal of Combinatorial Theory, Series B, Journal of Combinatorial Theory, Series B, 2023, 160, pp.15-35. ⟨10.1016/j.jctb.2022.12.004⟩, STACS 2022, STACS 2022, Mar 2022, Marseille, France
Accession number :
edsair.doi.dedup.....36a29e4afcb665b3319009bf0dd6c289
Full Text :
https://doi.org/10.1016/j.jctb.2022.12.004⟩