Back to Search
Start Over
Combinatorial quantum gravity: geometry from random bits
- Source :
- Journal of High Energy Physics, Journal of High Energy Physics, Vol 2017, Iss 9, Pp 1-8 (2017)
- Publication Year :
- 2017
- Publisher :
- Springer Science and Business Media LLC, 2017.
-
Abstract
- I propose a quantum gravity model in which geometric space emerges from random bits in a quantum phase transition driven by the combinatorial Ollivier-Ricci curvature and corresponding to the condensation of short cycles in random graphs. This quantum critical point defines quantum gravity non-perturbatively. In the ordered geometric phase at large distances the action reduces to the standard Einstein-Hilbert term.<br />Revised version to appear in JHEP
- Subjects :
- High Energy Physics - Theory
Quantum phase transition
Nuclear and High Energy Physics
Critical phenomena
FOS: Physical sciences
General Relativity and Quantum Cosmology (gr-qc)
Curvature
01 natural sciences
General Relativity and Quantum Cosmology
Gravitation
Quantum critical point
0103 physical sciences
Models of Quantum Gravity
lcsh:Nuclear and particle physics. Atomic energy. Radioactivity
Statistical physics
010306 general physics
Condensed Matter - Statistical Mechanics
Physics
Random graph
Statistical Mechanics (cond-mat.stat-mech)
010308 nuclear & particles physics
Random Systems
High Energy Physics - Theory (hep-th)
Geometric phase
lcsh:QC770-798
Quantum gravity
Subjects
Details
- ISSN :
- 10298479
- Volume :
- 2017
- Database :
- OpenAIRE
- Journal :
- Journal of High Energy Physics
- Accession number :
- edsair.doi.dedup.....36a1a16f31399e0392e950ddef8e6c53
- Full Text :
- https://doi.org/10.1007/jhep09(2017)045