Back to Search Start Over

Investigating the composition of organic aerosol resulting from cyclohexene ozonolysis: low molecular weight and heterogeneous reaction products

Authors :
Hamilton, J. F.
Alastair Lewis
Reynolds, J. C.
Carpenter, L. J.
Lubben, A.
EGU, Publication
Department of Chemistry [York, UK]
University of York [York, UK]
Bruker Daltonics
Banner Lane
Source :
Scopus-Elsevier, Atmospheric Chemistry and Physics, Vol 6, Iss 12, Pp 4973-4984 (2006), Atmospheric Chemistry and Physics, Atmospheric Chemistry and Physics, European Geosciences Union, 2006, 6 (12), pp.4973-4984
Publication Year :
2006
Publisher :
Copernicus GmbH, 2006.

Abstract

International audience; The composition of organic aerosol formed from the gas phase ozonolysis of cyclohexene has been investigated in a smog chamber experiment. Comprehensive gas chromatography with time of flight mass spectrometric detection was used to determine that dicarboxylic acids and corresponding cyclic anhydrides dominated the small gas phase reaction products found in aerosol sampled during the first hour after initial aerosol formation. Structural analysis of larger more polar molecules was performed using liquid chromatography with ion trap tandem mass spectrometry. This indicated that the majority of identified organic mass was in dimer form, built up from combinations of the most abundant small acid molecules, with frequent indication of the inclusion of adipic acid. Trimers and tetramers potentially formed via similar acid combinations were also observed in lower abundances. Tandem mass spectral data indicated dimers with either acid anhydride or ester functionalities as the linkage between monomers. High-resolution mass spectrometry identified the molecular formulae of the most abundant dimer species to be C10H16O6, C11H18O6, C10H14O8 and C11H16O8 and could be used in some cases to reduce uncertainty in exact chemical structure determination by tandem MS.

Details

ISSN :
16807316 and 16807324
Database :
OpenAIRE
Journal :
Scopus-Elsevier, Atmospheric Chemistry and Physics, Vol 6, Iss 12, Pp 4973-4984 (2006), Atmospheric Chemistry and Physics, Atmospheric Chemistry and Physics, European Geosciences Union, 2006, 6 (12), pp.4973-4984
Accession number :
edsair.doi.dedup.....36951fc93195ebe6c3485ba63bc98cd9
Full Text :
https://doi.org/10.5194/acpd-6-6369-2006