Back to Search Start Over

Decomposing Cubic Graphs into Connected Subgraphs of Size Three

Authors :
Irena Rusu
Laurent Bulteau
Anthony Labarre
Guillaume Fertin
Romeo Rizzi
Department of Software Engineering and Theoretical Computer Science (SWT - TUB)
Technische Universität Berlin (TU)
Laboratoire d'Informatique de Nantes Atlantique (LINA)
Centre National de la Recherche Scientifique (CNRS)-Mines Nantes (Mines Nantes)-Université de Nantes (UN)
Laboratoire d'Informatique Gaspard-Monge (LIGM)
Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM)
Department of Computer Science [Verona] (UNIVR | DI)
University of Verona (UNIVR)
Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS)
Università degli studi di Verona = University of Verona (UNIVR)
Labarre, Anthony
Source :
HAL, Proceedings of the 22nd International Computing and Combinatorics Conference (COCOON), The 22nd International Computing and Combinatorics Conference (COCOON), The 22nd International Computing and Combinatorics Conference (COCOON), Aug 2016, Ho Chi Minh City, Vietnam, Lecture Notes in Computer Science ISBN: 9783319426334, COCOON
Publication Year :
2016
Publisher :
arXiv, 2016.

Abstract

Let $S=\{K_{1,3},K_3,P_4\}$ be the set of connected graphs of size 3. We study the problem of partitioning the edge set of a graph $G$ into graphs taken from any non-empty $S'\subseteq S$. The problem is known to be NP-complete for any possible choice of $S'$ in general graphs. In this paper, we assume that the input graph is cubic, and study the computational complexity of the problem of partitioning its edge set for any choice of $S'$. We identify all polynomial and NP-complete problems in that setting, and give graph-theoretic characterisations of $S'$-decomposable cubic graphs in some cases.<br />Comment: to appear in the proceedings of COCOON 2016

Details

ISBN :
978-3-319-42633-4
ISBNs :
9783319426334
Database :
OpenAIRE
Journal :
HAL, Proceedings of the 22nd International Computing and Combinatorics Conference (COCOON), The 22nd International Computing and Combinatorics Conference (COCOON), The 22nd International Computing and Combinatorics Conference (COCOON), Aug 2016, Ho Chi Minh City, Vietnam, Lecture Notes in Computer Science ISBN: 9783319426334, COCOON
Accession number :
edsair.doi.dedup.....36736e1a258285e8277ae4509cdbc221
Full Text :
https://doi.org/10.48550/arxiv.1604.08603