Back to Search Start Over

May radiomic data predict prostate cancer aggressiveness?

Authors :
Laura Mercatelli
Claudia Caudai
Vittorio Miele
Elena Bertelli
Andrea Barucci
Roberto Carpi
Nicola Zoppetti
Simone Agostini
Sara Colantonio
Danila Germanese
Maria Antonietta Pascali
Source :
CAIP 2019-International Conference on Computer Analysis of Images and Patterns, pp. 65–75, Salerno, Italy, 6 September, 2019, info:cnr-pdr/source/autori:Germanese D.; Colantonio S.; Caudai C.; Pascali M.A.; Barucci A.; Zoppetti N.; Agostini S.; Bertelli E.; Mercatelli L.; Miele V.; Carpi R./congresso_nome:CAIP 2019-International Conference on Computer Analysis of Images and Patterns/congresso_luogo:Salerno, Italy/congresso_data:6 September, 2019/anno:2019/pagina_da:65/pagina_a:75/intervallo_pagine:65–75, Computer Analysis of Images and Patterns ISBN: 9783030299293, CAIP Workshops
Publication Year :
2019

Abstract

Radiomics can quantify tumor phenotypic characteristics non-invasively by defining a signature correlated with biological information. Thanks to algorithms derived from computer vision to extract features from images, and machine learning methods to mine data, Radiomics is the perfect case study of application of Artificial Intelligence in the context of precision medicine. In this study we investigated the association between radiomic features extracted from multi-parametric magnetic resonance imaging (mp-MRI)of prostate cancer (PCa) and the tumor histologic subtypes (using Gleason Score) using machine learning algorithms, in order to identify which of the mp-MRI derived radiomic features can distinguish high and low risk PCa.

Details

Language :
English
ISBN :
978-3-030-29929-3
ISBNs :
9783030299293
Database :
OpenAIRE
Journal :
CAIP 2019-International Conference on Computer Analysis of Images and Patterns, pp. 65–75, Salerno, Italy, 6 September, 2019, info:cnr-pdr/source/autori:Germanese D.; Colantonio S.; Caudai C.; Pascali M.A.; Barucci A.; Zoppetti N.; Agostini S.; Bertelli E.; Mercatelli L.; Miele V.; Carpi R./congresso_nome:CAIP 2019-International Conference on Computer Analysis of Images and Patterns/congresso_luogo:Salerno, Italy/congresso_data:6 September, 2019/anno:2019/pagina_da:65/pagina_a:75/intervallo_pagine:65–75, Computer Analysis of Images and Patterns ISBN: 9783030299293, CAIP Workshops
Accession number :
edsair.doi.dedup.....364b073b4aa99a0308d575b8cb779f6e