Back to Search
Start Over
May radiomic data predict prostate cancer aggressiveness?
- Source :
- CAIP 2019-International Conference on Computer Analysis of Images and Patterns, pp. 65–75, Salerno, Italy, 6 September, 2019, info:cnr-pdr/source/autori:Germanese D.; Colantonio S.; Caudai C.; Pascali M.A.; Barucci A.; Zoppetti N.; Agostini S.; Bertelli E.; Mercatelli L.; Miele V.; Carpi R./congresso_nome:CAIP 2019-International Conference on Computer Analysis of Images and Patterns/congresso_luogo:Salerno, Italy/congresso_data:6 September, 2019/anno:2019/pagina_da:65/pagina_a:75/intervallo_pagine:65–75, Computer Analysis of Images and Patterns ISBN: 9783030299293, CAIP Workshops
- Publication Year :
- 2019
-
Abstract
- Radiomics can quantify tumor phenotypic characteristics non-invasively by defining a signature correlated with biological information. Thanks to algorithms derived from computer vision to extract features from images, and machine learning methods to mine data, Radiomics is the perfect case study of application of Artificial Intelligence in the context of precision medicine. In this study we investigated the association between radiomic features extracted from multi-parametric magnetic resonance imaging (mp-MRI)of prostate cancer (PCa) and the tumor histologic subtypes (using Gleason Score) using machine learning algorithms, in order to identify which of the mp-MRI derived radiomic features can distinguish high and low risk PCa.
- Subjects :
- Prostate Cancer Aggressiveness
Radiomics
business.industry
Computer science
Prostate Cancer
Pattern recognition
Context (language use)
medicine.disease
Precision medicine
030218 nuclear medicine & medical imaging
Machine Learning
03 medical and health sciences
Prostate cancer
0302 clinical medicine
030220 oncology & carcinogenesis
medicine
Artificial intelligence
business
Subjects
Details
- Language :
- English
- ISBN :
- 978-3-030-29929-3
- ISBNs :
- 9783030299293
- Database :
- OpenAIRE
- Journal :
- CAIP 2019-International Conference on Computer Analysis of Images and Patterns, pp. 65–75, Salerno, Italy, 6 September, 2019, info:cnr-pdr/source/autori:Germanese D.; Colantonio S.; Caudai C.; Pascali M.A.; Barucci A.; Zoppetti N.; Agostini S.; Bertelli E.; Mercatelli L.; Miele V.; Carpi R./congresso_nome:CAIP 2019-International Conference on Computer Analysis of Images and Patterns/congresso_luogo:Salerno, Italy/congresso_data:6 September, 2019/anno:2019/pagina_da:65/pagina_a:75/intervallo_pagine:65–75, Computer Analysis of Images and Patterns ISBN: 9783030299293, CAIP Workshops
- Accession number :
- edsair.doi.dedup.....364b073b4aa99a0308d575b8cb779f6e