Back to Search Start Over

Universal graph description for one-dimensional exchange models

Authors :
Jean Decamp
Huanqian Loh
Christian Miniatura
Jiangbin Gong
Centre for Quantum Technologies [Singapore] (CQT)
National University of Singapore (NUS)
Institut de Physique de Nice (INPHYNI)
Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)
MajuLab (UMI 3654)
National University of Singapore (NUS)-Sorbonne Université (SU)
Source :
Physical Review Research, Physical Review Research, American Physical Society, 2020, 2 (3), ⟨10.1103/PhysRevResearch.2.033297⟩, Physical Review Research, American Physical Society, 2020, ⟨10.1103/PhysRevResearch.2.033297⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; We demonstrate that a large class of one-dimensional quantum and classical exchange models can be described by the same type of graphs, namely Cayley graphs of the permutation group. Their well-studied spectral properties allow us to derive crucial information about those models of fundamental importance in both classical and quantum physics, and to completely characterize their algebraic structure. Notably, we prove that the spectral gap can be obtained in polynomial computational time, which has strong implications in the context of adiabatic quantum computing with quantum spin-chains. This quantity also characterizes the rate to stationarity of some important classical random processes such as interchange and exclusion processes. Reciprocally, we use results derived from the celebrated Bethe ansatz to obtain original mathematical results about these graphs in the unweighted case. We also discuss extensions of this unifying framework to other systems, such as asymmetric exclusion processes -- a paradigmatic model in non-equilibrium physics, or the more exotic non-Hermitian quantum systems.

Details

Language :
English
ISSN :
26431564
Database :
OpenAIRE
Journal :
Physical Review Research, Physical Review Research, American Physical Society, 2020, 2 (3), ⟨10.1103/PhysRevResearch.2.033297⟩, Physical Review Research, American Physical Society, 2020, ⟨10.1103/PhysRevResearch.2.033297⟩
Accession number :
edsair.doi.dedup.....364514662168d250f1424ace6025a4b4
Full Text :
https://doi.org/10.1103/PhysRevResearch.2.033297⟩