Back to Search Start Over

Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods

Authors :
Matteo Muratori
Bruno Nazaret
Matteo Bonforte
Jean Dolbeault
Departamento de Matemáticas
Universidad Autonoma de Madrid (UAM)
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Dipartimento di Matematica, 'Francesco Brioschi'
Politecnico di Milano [Milan] (POLIMI)
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) (SAMM)
Université Paris 1 Panthéon-Sorbonne (UP1)
ANR-13-BS01-0004,KIBORD,Modèles cinétiques en biologie et domaines connexes(2013)
ANR-12-BS01-0019,STAB,Stabilité du comportement asymptotique d'EDP, de processus stochastiques et de leurs discrétisations.(2012)
Source :
Kinetic and Related Models, Kinetic and Related Models, AIMS, 2017, 10 (1), pp.61-91
Publication Year :
2017

Abstract

International audience; This paper is the second part of the study. In Part~I, self-similar solutions of a weighted fast diffusion equation (WFD) were related to optimal functions in a family of subcritical Caffarelli-Kohn-Nirenberg inequalities (CKN) applied to radially symmetric functions. For these inequalities, the linear instability (symmetry breaking) of the optimal radial solutions relies on the spectral properties of the linearized evolution operator. Symmetry breaking in (CKN) was also related to large-time asymptotics of (WFD), at formal level. A first purpose of Part~II is to give a rigorous justification of this point, that is, to determine the asymptotic rates of convergence of the solutions to (WFD) in the symmetry range of (CKN) as well as in the symmetry breaking range, and even in regimes beyond the supercritical exponent in (CKN). Global rates of convergence with respect to a free energy (or entropy) functional are also investigated, as well as uniform convergence to self-similar solutions in the strong sense of the relative error. Differences with large-time asymptotics of fast diffusion equations without weights will be emphasized.

Details

Language :
English
ISSN :
19375093 and 19375077
Database :
OpenAIRE
Journal :
Kinetic and Related Models, Kinetic and Related Models, AIMS, 2017, 10 (1), pp.61-91
Accession number :
edsair.doi.dedup.....3625ec0f3f52edc943b867c79dc2f835