Back to Search Start Over

Use of Spectroscopic Techniques for Evaluating the Coupling of Porphyrins on Biocompatible Nanoparticles. A Potential System for Photodynamics, Theranostics, and Nanodrug Delivery Applications

Authors :
Luiz Eduardo S. Freire
Pablo José Gonçalves
Andris F. Bakuzis
Fábio C. Bezerra
Lais Nogueira Magno
Rubens A. Guerra
Source :
The journal of physical chemistry. A. 121(9)
Publication Year :
2017

Abstract

Modern medicine has been searching for new and more efficient strategies for diagnostics and therapeutics applications. Considering this, porphyrin molecules have received great interest for applications in photodiagnostics and phototherapies, even as magnetic nanoparticles for drug-delivery systems and magnetic-hyperthermia therapy. Aiming to obtain a multifunctional system, which combines diagnostics with therapeutic functions on the same platform, the present study employed UV/vis absorption and fluorescence spectroscopies to evaluate the interaction between meso-tetrakis(p-sulfonatofenyl)porphyrin (TPPS) and maghemite nanoparticles (γ-Fe2O3). These spectroscopic techniques allowed us to describe the dynamics of coupling porphyrins on nanoparticles and estimate the number of 21 porphyrins per nanoparticle. Also, the binding parameters, such as the association constants (Ka = 8.89 × 105 M-1) and bimolecular quenching rate constant (kq = 2.54 × 1014 M-1 s-1) were obtained. These results suggest a static quenching process where the electrostatic attraction plays an essential role. The work shows that spectroscopic techniques are powerful tools to evaluate the coupling of organic molecules and nanoparticles. Besides, the system studied provides a relevant background for potential applications in bionanotechnology and nanomedicine, such as (1) nanodrug delivery system, (2) photodiagnostics/theranostics, and/or (3) a combined action of photodynamic and hyperthermia therapies, working in a synergetic way.

Details

ISSN :
15205215
Volume :
121
Issue :
9
Database :
OpenAIRE
Journal :
The journal of physical chemistry. A
Accession number :
edsair.doi.dedup.....3624516aa3a406116b8ff926b03ef560