Back to Search Start Over

Chromatin structure and its chemical modifications regulate the ubiquitin ligase substrate selectivity of UHRF1

Authors :
Zu-Wen Sun
Bradley M. Dickson
Andrea L. Johnstone
Robert M. Vaughan
Matthew F. Whelihan
Martis W. Cowles
Evan M. Cornett
Marcus A. Cheek
Scott B. Rothbart
Christine A. Ausherman
Source :
Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2018
Publisher :
Proceedings of the National Academy of Sciences, 2018.

Abstract

Significance DNA methylation and histone posttranslational modifications are key epigenetic marks that contribute to the fine-tuned regulation of gene expression and other chromatin-templated biological processes. Here, we build artificial chromatin templates and reveal key chromatin structural features and epigenetic marks that coordinately regulate the binding and enzymatic activity of the DNA methylation regulator UHRF1. Studying activities of epigenetic regulators in the context of defined chromatin templates, particularly for multidomain histone and DNA binding proteins such as UHRF1, is critical for understanding molecular mechanisms of epigenetic crosstalk and mechanics regulating epigenetic signaling, and for determining how epigenetic dysregulation contributes to human disease.<br />Mitotic inheritance of DNA methylation patterns is facilitated by UHRF1, a DNA- and histone-binding E3 ubiquitin ligase that helps recruit the maintenance DNA methyltransferase DNMT1 to replicating chromatin. The DNA methylation maintenance function of UHRF1 is dependent on its ability to bind chromatin, where it facilitates monoubiquitination of histone H3 at lysines 18 and 23, a docking site for DNMT1. Because of technical limitations, this model of UHRF1-dependent DNA methylation inheritance has been constructed largely based on genetics and biochemical observations querying methylated DNA oligonucleotides, synthetic histone peptides, and heterogeneous chromatin extracted from cells. Here, we construct semisynthetic mononucleosomes harboring defined histone and DNA modifications and perform rigorous analysis of UHRF1 binding and enzymatic activity with these reagents. We show that multivalent engagement of nucleosomal linker DNA and dimethylated lysine 9 on histone H3 directs UHRF1 ubiquitin ligase activity toward histone substrates. Notably, we reveal a molecular switch, stimulated by recognition of hemimethylated DNA, which redirects UHRF1 ubiquitin ligase activity away from histones in favor of robust autoubiquitination. Our studies support a noncompetitive model for UHRF1 and DNMT1 chromatin recruitment to replicating chromatin and define a role for hemimethylated linker DNA as a regulator of UHRF1 ubiquitin ligase substrate selectivity.

Details

ISSN :
10916490 and 00278424
Volume :
115
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....35d3476e91992f6032d6e652c472b384
Full Text :
https://doi.org/10.1073/pnas.1806373115