Back to Search Start Over

SEX-DETector: a probabilistic approach to study sex chromosomes in non-model organisms

Authors :
Gabriel A. B. Marais
Niklaus Zemp
Jos Käfer
Sylvain Mousset
Franck Picard
Aline Muyle
Sexe et évolution
Département PEGASE [LBBE] (PEGASE)
Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
Statistique en grande dimension pour la génomique
Source :
Genome Biology and Evolution, Genome Biology and Evolution, 2016, 8, pp.2530-2543. ⟨10.1093/gbe/evw172⟩, Genome Biology and Evolution, Society for Molecular Biology and Evolution, 2016, 8, pp.2530-2543. ⟨10.1093/gbe/evw172⟩, Genome Biology and Evolution, 8 (8)
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20–35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available.<br />Genome Biology and Evolution, 8 (8)<br />ISSN:1759-6653

Details

Language :
English
ISSN :
17596653
Database :
OpenAIRE
Journal :
Genome Biology and Evolution, Genome Biology and Evolution, 2016, 8, pp.2530-2543. ⟨10.1093/gbe/evw172⟩, Genome Biology and Evolution, Society for Molecular Biology and Evolution, 2016, 8, pp.2530-2543. ⟨10.1093/gbe/evw172⟩, Genome Biology and Evolution, 8 (8)
Accession number :
edsair.doi.dedup.....35cf8e0b43f31748a6be71fdef528f97
Full Text :
https://doi.org/10.1093/gbe/evw172⟩