Back to Search Start Over

Noise-based ballistic wave passive seismic monitoring. Part 1: body waves

Authors :
W. Van der Veen
Sophie J. Postif
Małgorzata Chmiel
Roméo Courbis
Pierre Boué
Tomoya Takano
Aurélien Mordret
Dan Hollis
Xander Campman
Thomas Lecocq
Florent Brenguier
Institut des Sciences de la Terre (ISTerre)
Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS)
Massachusetts Institute of Technology (MIT)
Tohoku University [Sendai]
Royal Observatory of Belgium [Brussels] (ROB)
Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Grenoble Alpes (UGA)-Université Gustave Eiffel-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
Source :
Geophysical Journal International, Geophysical Journal International, 2020, 221 (1), pp.683-691. ⟨10.1093/gji/ggz440⟩, Geophysical Journal International, Oxford University Press (OUP), 2020, 221 (1), pp.683-691. ⟨10.1093/gji/ggz440⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

SUMMARY Unveiling the mechanisms of earthquake and volcanic eruption preparation requires improving our ability to monitor the rock mass response to transient stress perturbations at depth. The standard passive monitoring seismic interferometry technique based on coda waves is robust but recovering accurate and properly localized P- and S-wave velocity temporal anomalies at depth is intrinsically limited by the complexity of scattered, diffracted waves. In order to mitigate this limitation, we propose a complementary, novel, passive seismic monitoring approach based on detecting weak temporal changes of velocities of ballistic waves recovered from seismic noise correlations. This new technique requires dense arrays of seismic sensors in order to circumvent the bias linked to the intrinsic high sensitivity of ballistic waves recovered from noise correlations to changes in the noise source properties. In this work we use a dense network of 417 seismometers in the Groningen area of the Netherlands, one of Europe's largest gas fields. Over the course of 1 month our results show a 1.5 per cent apparent velocity increase of the P wave refracted at the basement of the 700-m-thick sedimentary cover. We interpret this unexpected high value of velocity increase for the refracted wave as being induced by a loading effect associated with rainfall activity and possibly canal drainage at surface. We also observe a 0.25 per cent velocity decrease for the direct P-wave travelling in the near-surface sediments and conclude that it might be partially biased by changes in time in the noise source properties even though it appears to be consistent with complementary results based on ballistic surface waves presented in a companion paper and interpreted as a pore pressure diffusion effect following a strong rainfall episode. The perspective of applying this new technique to detect continuous localized variations of seismic velocity perturbations at a few kilometres depth paves the way for improved in situ earthquake, volcano and producing reservoir monitoring.

Details

Language :
English
ISSN :
0956540X and 1365246X
Database :
OpenAIRE
Journal :
Geophysical Journal International, Geophysical Journal International, 2020, 221 (1), pp.683-691. ⟨10.1093/gji/ggz440⟩, Geophysical Journal International, Oxford University Press (OUP), 2020, 221 (1), pp.683-691. ⟨10.1093/gji/ggz440⟩
Accession number :
edsair.doi.dedup.....3550740d7d7611f4bdcc40896ef856f3