Back to Search Start Over

Molecular Profiling and Gene Banking of Rabbit EPCs Derived from Two Biological Sources

Authors :
Peter Chrenek
Marián Tomka
Jaromír Vašíček
Miroslav Bauer
Andrea Svoradová
Andrej Baláži
Mária Tirpáková
Source :
Genes, Volume 12, Issue 3, Genes, Vol 12, Iss 366, p 366 (2021)
Publication Year :
2021

Abstract

Endothelial progenitor cells (EPCs) have been broadly studied for several years due to their outstanding regenerative potential. Moreover, these cells might be a valuable source of genetic information for the preservation of endangered animal species. However, a controversy regarding their characterization still exists. The aim of this study was to isolate and compare the rabbit peripheral blood- and bone marrow-derived EPCs with human umbilical vein endothelial cells (HUVECs) in terms of their phenotype and morphology that could be affected by the passage number or cryopreservation as well as to assess their possible neuro-differentiation potential. Briefly, cells were isolated and cultured under standard endothelial conditions until passage 3. The morphological changes during the culture were monitored and each passage was analyzed for the typical phenotype using flow cytometry, quantitative real–time polymerase chain reaction (qPCR) and novel digital droplet PCR (ddPCR), and compared to HUVECs. The neurogenic differentiation was induced using a commercial kit. Rabbit cells were also cryopreserved for at least 3 months and then analyzed after thawing. According to the obtained results, both rabbit EPCs exhibit a spindle-shaped morphology and high proliferation rate. The both cell lines possess same stable phenotype: CD14-CD29+CD31-CD34-CD44+CD45-CD49f+CD73+CD90+CD105+CD133-CD146-CD166+VE-cadherin+VEGFR-2+SSEA-4+MSCA-1-vWF+eNOS+AcLDL+ALDH+vimentin+desmin+α-SMA+, slightly different from HUVECs. Moreover, both induced rabbit EPCs exhibit neuron-like morphological changes and expression of neuronal markers ENO2 and MAP2. In addition, cryopreserved rabbit cells maintained high viability (&gt<br />85%) and endothelial phenotype after thawing. In conclusion, our findings suggest that cells expanded from the rabbit peripheral blood and bone marrow are of the endothelial origin with a stable marker expression and interesting proliferation and differentiation capacity.

Details

ISSN :
20734425
Volume :
12
Issue :
3
Database :
OpenAIRE
Journal :
Genes
Accession number :
edsair.doi.dedup.....353b9f573ff7f10f6398fff35ad4066b