Back to Search Start Over

High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography

Authors :
Gangjun Liu
Bernard Choi
Wangcun Jia
Victor Sun
Zhongping Chen
Source :
Optics Express, Liu, Gangjun; Jia, Wangcun; Sun, Victor; Choi, Bernard; & Chen, Zhongping. (2012). High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography. Optics Express, 20(7), 7694-7705. UC Irvine: Institute for Clinical and Translational Science. Retrieved from: http://www.escholarship.org/uc/item/8sf493q9
Publication Year :
2012
Publisher :
Optical Society of America, 2012.

Abstract

In this paper, the features of the intensity-based Doppler variance (IBDV) method were analyzed systemically with a flow phantom. The effects of beam scanning density, flow rate and the time interval between neighboring A-lines on the performance of this method were investigated. The IBDV method can be used to quantify the flow rate and its sensitivity can be improved by increasing the time interval between the neighboring A-lines. A higher sensitivity IBDV method that applies the algorithm along the slower scan direction was proposed. In comparison to laser speckle imaging maps of blood flow, we demonstrated the ability of the method to identify vessels with altered blood flow. In clinical measurements, we demonstrated the ability of the method to image vascular networks with exquisite spatial resolution and at depths up to 1.2 mm in human skin. These results collectively demonstrated the potential of the method to monitor the microvasculature during disease progression and in response to therapeutic intervention.

Details

Language :
English
ISSN :
10944087
Volume :
20
Issue :
7
Database :
OpenAIRE
Journal :
Optics Express
Accession number :
edsair.doi.dedup.....35320d68381ead431cd66479f2f08412