Back to Search Start Over

A first step toward uncovering the truth about weight tuning in deformable image registration

Authors :
Kleopatra Pirpinia
Tanja Alderliesten
Marcel van Herk
Jan-Jakob Sonke
Peter A. N. Bosman
Source :
Medical Imaging: Image Processing
Publication Year :
2016
Publisher :
SPIE, 2016.

Abstract

Deformable image registration is currently predominantly solved by optimizing a weighted linear combination of objectives. Successfully tuning the weights associated with these objectives is not trivial, leading to trial-and-error approaches. Such an approach assumes an intuitive interplay between weights, optimization objectives, and target registration errors. However, it is not known whether this always holds for existing registration methods. To investigate the interplay between weights, optimization objectives, and registration errors, we employ multi-objective optimization. Here, objectives of interest are optimized simultaneously, causing a set of multiple optimal solutions to exist, called the optimal Pareto front. Our medical application is in breast cancer and includes the challenging prone-supine registration problem. In total, we studied the interplay in three different ways. First, we ran many random linear combinations of objectives using the well-known registration software elastix. Second, since the optimization algorithms used in registration are typically of a local-search nature, final solutions may not always form a Pareto front. We therefore employed a multi-objective evolutionary algorithm that finds weights that correspond to registration outcomes that do form a Pareto front. Third, we examined how the interplay differs if a true multi-objective (i.e., weight-free) image registration method is used. Results indicate that a trial-and-error weight-adaptation approach can be successful for the easy prone to prone breast image registration case, due to the absence of many local optima. With increasing problem difficulty the use of more advanced approaches can be of value in finding and selecting the optimal registration outcomes.

Details

ISSN :
0277786X
Database :
OpenAIRE
Journal :
SPIE Proceedings
Accession number :
edsair.doi.dedup.....35317f0140689b1dde69213844dd7bce
Full Text :
https://doi.org/10.1117/12.2216370