Back to Search Start Over

A Divergent Role of the SIRT1-TopBP1 Axis in Regulating Metabolic Checkpoint and DNA Damage Checkpoint

Authors :
Sung Yun Jung
Yunhui Li
Leng Wenchuan
Jun Qin
Bo Qin
Zhenkun Lou
Tongzheng Liu
Yi Hui Lin
Kuntian Luo
Jian Yuan
Min Deng
Haoxing Zhang
Debra Evans
Source :
Molecular Cell. 56(5):681-695
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

DNA replication is executed only when cells have sufficient metabolic resources and undamaged DNA. Nutrient limitation and DNA damage cause a metabolic checkpoint and DNA damage checkpoint, respectively. Although SIRT1 activity is regulated by metabolic stress and DNA damage, its function in these stress-mediated checkpoints remains elusive. Here we report that the SIRT1-TopBP1 axis functions as a switch for both checkpoints. With glucose deprivation, SIRT1 is activated and deacetylates TopBP1, resulting in TopBP1-Treslin disassociation and DNA replication inhibition. Conversely, SIRT1 activity is inhibited under genotoxic stress, resulting in increased TopBP1 acetylation that is important for the TopBP1-Rad9 interaction and activation of the ATR-Chk1 pathway. Mechanistically, we showed that acetylation of TopBP1 changes the conformation of TopBP1, thereby facilitating its interaction with distinct partners in DNA replication and checkpoint activation. Taken together, our studies identify the SIRT1-TopBP1 axis as a key signaling mode in the regulation of the metabolic checkpoint and the DNA damage checkpoint.

Details

ISSN :
10972765
Volume :
56
Issue :
5
Database :
OpenAIRE
Journal :
Molecular Cell
Accession number :
edsair.doi.dedup.....34e6a7d3f0534cdd17db69f1149c1c9d
Full Text :
https://doi.org/10.1016/j.molcel.2014.10.007